
Kermeta tutorial

How to add behavior to a metamodel

François Tanguy, Didier Vojtisek, Cyril Faucher

Abstract

This tutorial is part of a serie of tutorials that explain step by step
one of the aspect of Kermeta. This one will explain you how to add
operational behavior to a metamodel.

Published Build date: 3-November-2010
2006-10-27T16:44:35

19/10/2006

Preface. ... v

Chapter 1. Prerequisites .. 1

Chapter 2. Objectives ... 2

Chapter 3. Finite State Machine Specifications ... 3

Chapter 4. The coding view of a meta model ... 4

Chapter 5. The run/step/fire operations ... 5

iii

List of Figures

3.1. .. 3
4.1. .. 4

iv

CHAPTER

Preface

Kermeta is a Domain Specific Language dedicated to metamodel engineering. It fills the gap let by
MOF which defines only the structure of meta-models, by adding a way to specify static semantic
(similar to OCL) and dynamic semantic (using operational semantic in the operation of the metamod-
el). Kermeta uses the object-oriented paradigm like Java or Eiffel. This document presents various as-
pects of the language, including the textual syntax, the metamodel (which can be viewed as the abstract
syntax) and some more advanced features typically included in its framework.

Important

Kermeta is an evolving software and d espite that we put a lot of attention to this document,
it may contain errors (more likely in the code samples). If you find any error or have some in-
formation that improves this document, please send it to us using the bug tracker in the
forge: http://gforge.inria.fr/tracker/?group_id=32 or using the developer mailing list
(kermeta-developers@lists.gforge.inria.fr) Last check: v0.3.1

Tip

The most update version of this document is available on line from http://www.kermeta.org .

v

http://gforge.inria.fr/tracker/?group_id=32
http://www.kermeta.org/

CHAPTER 1

Prerequisites

This tutorial is one part of a bigger tutorial based on a Finite State Machine example. Even if some of its as-
pects are reexplained here, the reader may lack information he can find in the big tutorial.

To understand this tutorial, you must be familiar with meta model creation. If not, please read the the dedic-
ated tutorial on "How to create KerMeta meta model".

Important

This tutorial does not cover the study of KerMeta language. Please have a look at the KerMeta
manual located at: http://www.kermeta.org/documents/manual/

1

../KerMeta-How-to-create-a-metamodel/
http://www.kermeta.org/documents/manual/

CHAPTER 2

Objectives

In this tutorial, we will see some uses of KerMeta language in order to add behavior to KerMeta meta model.
We start by remembering the reader the FSM specifications. And then, we explain step by step how to add
behavior to the meta model.

2

CHAPTER 3

Finite State Machine
Specifications

We want to represent IO/state machines. Inputs and outputs can be attached on each transition. To illustrate
finite state machine, here is a simple example. This state machine recognizes the "hello" motif and produces
the "world" motif.

Here, we present this finite-state machine in a specific graphical syntax where states are presented as squares
and transitions by arrow between squares. Input and outputs are present above transitions. Here, "h/w" says
that we consume an "h" to produce a "w".

Figure 3.1.

This simple state machine can be modeled and executed easily in Kermeta. See the following meta-model
presented in a class diagram syntax.

3

CHAPTER 4

The coding view of a meta model

It will be easier to add behavior to your meta model thanks the coding view because you can clearly see
blocks of code (conditions, loops...).

Figure 4.1.

Then have a look at the "fsm.kmt" file in the "kermeta" directory.

The class diagram suggests that we must fill in three operations :

• run() for FSM class,

• step(String): String for State class,

• and fire(): String for Transition class.

4

CHAPTER 5

The run/step/fire operations

• The run operation is used as a user interface. Thanks to this operation, we are going to display information
about the finite state machine, read user input and process steps.

• The step operation is used to go to an other state depending on the user's input and the transitions available
from the current state.

• The fire operation is used to change the current state and to get the produced string.

Let us see the behavior of these three operations.

The run algorithm

Behavior :

1 – initialize current state

2 – loop until the user's input equal to "quit"

print the current state

read a string

process a step

catch exceptions if there are some and exit the program displaying the error.

Here is the code of the operation :

operation run() : Void raises FSMException is do
// reset if there is no current state
if self.currentState == void then self.currentState := self.initialState end
self
from var str : String init "init"
until str == "quit"
loop
stdio.writeln("Current state : " + self.currentState.name)
str := stdio.read("give me a letter : ")
if str == "quit" then
stdio.writeln("")
stdio.writeln("quitting ...")

else
if str == "print" then
stdio.writeln("")

else
stdio.writeln(str)
stdio.writeln("stepping...")
do

var textRes : String

5

textRes := self.currentState.step(str)
if(textRes == void or textRes == "") then
textRes := "NC"

end

stdio.writeln("string produced : " + textRes)
rescue (err : ConstraintViolatedPre)
stdio.writeln(err.toString)
stdio.writeln(err.message)
str := "quit"

rescue (err : ConstraintViolatedPost)
stdio.writeln(err.toString)
stdio.writeln(err.message)
str := "quit"

rescue(err : NonDeterminism)
stdio.writeln(err.toString)
str := "quit"

rescue(err : NoTransition)
stdio.writeln(err.toString)
str := "quit"

end
end

end
end

end

The step algorithm

In this operation, there are pre and post conditions. These are conditions checked each time the operation is
called. If they are evaluated to false an exception is raised. You can choose to check them or not. Please refer
to the corresponding tutorial on how to use run configurations.

Behavior :

1 – Select the possible transitions.

2 – If there is none raise a NoTransition exception.

If there is more than one raise a NonDeterminism exception.

3 – If there is only one transition, call its fire operation and return its result.

// Go to the next state
operation step(c : String) : String raises FSMException

// Declaration of the pre-condition
pre notVoidInput is
c != void and c != ""

// Declaration of the post-condition
post notVoidOutput is
result != void and result != ""

is do
// Get the valid transitions
var validTransitions : Collection<Transition>
validTransitions := outgoingTransition.select { t | t.input.equals(c) }
// Check if there is one and only one valid transition
if validTransitions.empty then raise NoTransition.new end
if validTransitions.size > 1 then raise NonDeterminism.new end

// Fire the transition
result := validTransitions.one.fire

end

The run/step/fire operations

6

The fire algorithm

Behavior :

1 – change the current state of the FSM

2 – return the produced string

// Fire the transition
operation fire() : String is do
// update FSM current state
source.owningFSM.currentState := target
result := output

end

The run/step/fire operations

7

	Kermeta tutorial
	Table of Contents
	Preface
	Chapter 1. Prerequisites
	Chapter 2. Objectives
	Chapter 3. Finite State Machine Specifications
	Chapter 4. The coding view of a meta model
	Chapter 5. The run/step/fire operations

