Kermeta tutorial

Reference manual

Francgois Tanguy, Didier Vojtisek, Cyril Faucher

Abstract

This tutorial is part of a serie of tutorials that explain step by step
one of the aspect of Kermeta. This one will show you how to use
Eclipse to run a Kermeta program.

Published Build date: 3-November-2010
2006-09-25T10:56:58
19/07/2006

(=g (=] =10 < \%

Chapter 1. Prer@qUISITES ..ooveviuiiiiiiiiiii i ee et s e e e e e e e e e e e eeeeeannannnne 1
Chapter 2. A view on the FSM meta modelccccceeiiiiiiiiiies 2
Chapter 3. How to run an FSM model ? ..o 3
3.1. An entry point for the Program.ccoeuuiiiiiii e 3
3.2. Constraints checking execution or no constraints checking execution. 4
3.3. Execution WithOUt Parameters.coceuiiiiiiiiiie e e e e 4
3.4. Execution With ParameEter(S).icvuuieiiieii e 5
Chapter 4. Constraints checking execution samplecccciiiiiiiiinnnnns 7
4.1. Pre condition VIOIATION.oceriiiiiiii i 7
4.2. P0oSt cONdition VIOIALION.oevviiiiiiieeciiieii e 7

List of Figures

CHAPTER

Preface

Kermeta is a Domain Specific Language dedicated to metamodel engineering. It fills the gap let by
MOF which defines only the structure of meta-models, by adding a way to specify static semantic
(similar to OCL) and dynamic semantic (using operational semantic in the operation of the metamod-
el). Kermeta uses the object-oriented paradigm like Java or Eiffel. This document presents various as-
pects of the language, including the textual syntax, the metamodel (which can be viewed asthe abstract
syntax) and some mor e advanced featurestypically included in its framework.

Important

Kermeta is an evolving software and d espite that we put a lot of attention to this document,
it may contain errors (more likely in the code samples). If you find any error or have some in-
formation that improves this document, please send it to us using the bug tracker in the
forge: http://gforge.inria.fritracker/?group_id=32 or using the developer mailing list
(kermeta-developers@lists.gforge.inria.fr) Last check: v0.3.1

Tip

The most update version of this document is available on line from http://www.kermeta.org .

http://gforge.inria.fr/tracker/?group_id=32
http://www.kermeta.org/

CHAPTER 1

Prerequisites

The reader is supposed to know how to create KerMeta meta models and how to add behavior to a metamod-
el. If not, please read the corresponding tutorials. models.

../KerMeta-How-to-create-a-metamodel/
../KerMeta-How-to-add-behavior-to-a-metamodel/
../KerMeta-How-to-add-behavior-to-a-metamodel/

CHAPTER 2

A view on the FSM meta model

The meta model used for this tutorial is contained in the file named "fsm.kmt" in the "metamodels" directory.
Thisis aKerMeta meta model which operations have been filled in.

~ I

- Eclipse SDK
Eile Edit Mavigate Search Project Analyses Run Window Help

| ra~ | @ a0 |3-0-Q | E @ |®F |G |85 o &
[£ Package Explorer &2 H\emrthv‘ Bl B fsm.kmt X
nE < * §Id$ =
* Project : fr.irisa.triskell.samples.fsm
~ @fr.|r|5a.tnskell.kermeta.samples.fsm.demo * File . fsmmodel.kmt
< Ekermeta * License : EPL
= i . i i =
& fsm.gen.km N Copyright : IRISA / INRIA / Universite de Rennes 1
's,isfsm.geﬂ.kmdi * Creation date : 03 October. 2005
i fsm.gen.kmt * Modified By :
*

Wagas Ahmed Saeed <wahmedsa@irisa.fr>
Cyril Faucher <cfaucher@irisa.fr>
i helper.kmt * Description :
¥ [=launcher * Finite State Machine Sample with Behaviour implemented in Kermeta

*/

*

i/ checkinvariants.kmt
i determinization.kmt package fsm;
i~ fsmLauncher.kmt .
- require kermeta
i» minimization.kmt
¥ [Zmetamodels using kermeta::standard
using kermeta::persistence
using kermeta::exceptions

#] fsm.ecore
E.".,r.fsm.ecured\

#] fsmStatic.ecore

safsmStatic.ecoredi Flass ¥
&) fsmToComplete.ecore attribute ownedState : oset State[0..*]#owningFSM
I = models reference initialState : State[1l..1]

reference finalState : State[0..%]

heckinvariants.launch reference currentState : State

leterminization.launch

oaderEsm.launch property readonly ownedTransition : OrderedSet<Transition>
getter is do

oaderFsm4prepost.launch

minimization.launch

& = e n}

Pmb\ems‘_}avadoc‘Declaratian (lfl Properties 23 Cansa\e‘ ¥ =0
‘Pmpeltv ‘Valne [l
~ Info
derived false
editable true
last modified 9/7/06 3:24 PM L
linked false
location Judd/ftanguy/Eclipse3.2Werkspace/fr.irisa.triskell. kermeta.samples.fsm.demo/kermeta/fsm.kn|_|
[l || — mo
J (g Writable Insert 1:1

Figure 2.1.

CHAPTER 3

How to run an FSM model ?

3.1. An entry point for the program

We want to execute an FSM model. To do that we must call the "run" operation of the "FSM" class. We are
going to do that thanks to a KerMeta script. This script will : load an instance of the FSM meta model stored

in afile cal the run operation of these instance. To launch a script, the interpreter must know the entry point
of the program. That is the roles of these two statements :

* @mainClass which stands for the main class,

* @mainOperation which stands for the main operation of the main class.

In the FSM example, those scripts are in the "launcher" directory. Look at "minimization.kmt" script. Here
the interpreter knows that entry point of the program is the operation "main" in the "Minimization" class.

How to run an FSM model ?

[d Java - minimization kmt - Eclipse SDK =~

Eile Edit MNavigate Search Project Analyses Run Window Help

s B0~ Q- |8 H G- @& |8 E e 5 (§Javal
[# Package Explorer 32 " Hierarchy = O|| 5 checkinvariants.kmt i determinization.kmt i+ fsmLauncher.kmt =8
== I §Id: fsm.kmt,v 1.4 2006/04/27 09:22:55 dvojtise Exp § (=
* Project : fr.irisa.tri 11.kermeta.samples. fsm. demo
~ Lf}fr.iri5a.mskell.kermeta.samples.fsm.demo * File
¥ (= kermeta ‘ Licens:e
fsm.gen.km . Copyright : =

%&fsm.gemkmdl ¢ Creation ¢

i fsm.gen.kmt * Modified By :
i fsm.kmt)

i helper.kmt

for Finite State Machine minimization
thod as entering point for choosing the file to minimize and then launching the minimization

o Kermeta Fil
~ [=launcher g Kermeta File
i checkinvariants.kmt

i determinization.kmt @mainClass "fsm::Minimization"
i fsmLauncher.kmt @mainOperation "main"

& minimization.kmt package fsm;

~ [=metamodels

&) fsm_ecore requ}re ../kermeta/fsm.kmt
require kermeta

et fsm.ecoredi

#] fsmStatic.ecore using fsm

using kermeta::standard

i fsmStatic.ecoredi ising kex :
//using kermeta::persistence

#) fsmToComplete.ecore
P (=models class Minimization
Sl checklnvariants.launch reference equivalent_pairs : set Pair[0..*] // The initial pairSet of the equivalence relation { F \ Q } »
[l determinization.launch reference all input_pairs : set Pair[0..%] // The QxQ set of possible pairs, where Q is the stateSet
=l loaderFsm.launch reference helper : AutomatonHelper

|=lloaderFsm4prepost.launch

operation main() : Void is do

[

[=] minimization.launch

])
Problems Javadoc Declaration | = Properties 22 - Console %5 v =0
Property Value [+l
~ Info
derived false
editable true
last modified 9/7/06 2:05 PM L
linked false
location (udd/ftanguy/Eclipse3.2Workspace/fr.iisa.triskell.kermeta.samples.fsm.demo/launcher/minimi ||
l 0 e) WD
o Writable Insert 1:1

Figure 3.1.

3.2. Constraints checking execution or no constraints
checking execution

Using KerMeta allows you to choose between two types of executions : one with constraints checking and
one without. A constraints checking execution checks every pre/post condition statements of your KerMeta
program. If one of this pre/post conditions are violated, an exception is raised and the program is aborted. A
none constraints checking execution does not check the pre/post condition statements of your KerMeta pro-
gram. For more details, go to section 4. One constraints checking execution sample is explained.

3.3. Execution without parameters

Let's have a look at the file named "minimization.kmt". Open it. Look at the code of the main operation.
There is no parameter. To run this script with constraint checking, right click on "minimization.kmt" and se-
lect "Run As" and "Kermete App with constraints". To run this script without constraint checking, right click
on "minimization.kmt" and select "Run As" and "Kermeta App".

4

How to run an FSM model ?

(%Y ieva- mimimization ki - Exlipse SDE. 7R T T o o |

Eile Edit MNavigate Search Project Analyses Run Window Help

r3- B-O-Q- B #EE- @G o~ & (@)
[# Package Explorer 32 " Hierarchy = O|| 5 checkinvariants.kmt i determinization.kmt §» fsmLauncher.kmt * minimization.kmt &2 =0
Sk F]
i#'fsm.gen.kmt] package fsm;
i fsm_kemt require "../kermeta/fsm.kmt" D
i helper.kmt require kermeta
¥ [Zlauncher using fsm

i» checklnvariants.kmt (||| using kermeta::standard
//using kermeta::persistence

i determinization.kmt

7 fsmLauncher.kmt class Minimization
{
= [=metamodels reference equivalent_pairs : set Pair[0..*] // itial pairSet of the equi
reference all_input_pairs : set Pair[0..*]
& fsm.ecare reference helper : AutomatonHelper
i fsm.ecoredi

lence relat
'/ The QxQ set of possible pairs, where Q is the stateSet

&) fsmStatic.ecore operation main() : Veid is do

aifsmStatic.ecoredi omaton (non-determinist)

#] fsmToComplete.ecore R P oM | E]B
¥ [Zmodels

8 complextodet.fsm Problems Javadoc Declaration Praperties E: I = R i =

i# complextodet.fsmdi minimization.kmt - fsm::Minimization:: main[1]

o Enter the EMF model of the automaton to minimize :../models/samplel.fsm 3

@ exampledemo.fsm

-Eﬁexampledemu.fsmd\ ../models/samplel. fsm

4 generated.fsm Enter the output file where to store the minimal automaton :../models/generated.fsm

o ﬁnput:falsetostring : [fsm::FSM:10021]

4 helloWorld.fsm (s1,81} ,

1 helloWorld.fsmdi {s2,s2} ,

Eo = {F-Q}*"F* is initialized

N linimalize succeeded

‘Ftsamplel fsmdi Equivalence classes creation succeeded : 2
4 samplelpostv.fsm Transition set creation succeeded

¢ samplel.fsm

i samplelpostv fsmdi digraph finite_state_machine {

& samplerun.fsm rankdir=IR;
Z;&samplerun.fsmd\ node [shape = doublecircle];
® s2 ;
;gsamplemdererm\mze.fsm node [shape = circlel;
7# sampletodeterminize.fsmdi sl -> s2 [label="c"];
|5l checkinvariants.launch " 52 -» s2 [label="x" J;
=l determinization.launch | | ltransitions : [fsm::State:11421], [fsm::State:11458]
\=l loaderFsm.launch transitions : [fsm::State:11458], [fsm::State:11458]
=l loaderFsm4prepost.launch = (=
(] [| € [

e

Figure 3.2.

The program asks you for afilename. Put in "../models/samplel.fsm" for example. You are lastly asked for a
filename which will correspond to the file generated by the program. Put in "../generated.fsm" and see the ex-
ecution.

3.4. Execution with parameter(s)

Now if you have a look at the three others scripts (checklnvariants, determinization and fsmLauncher) you
will notice that the main operation of the main class takes one argument. Let's focus on "fsmLauncher.kmt"
launcher. The main operation takes one parameter which is the name of the file containing the FSM model. It
loads the moddl, printsit and runsit. If you try the running method above, an exception is raised because the
parameterized file does not exist. Indeed we did not specify any filename to the program. So, you cannot use
the method above to run those kind of script. That is the reason why we are going to use run configurations.
Then right click on "fsmLauncher.kmt” file and select "Run As" and "Run...". A window appears like the one
below. Select the run configuration named "loaderFSM" and look at the different options. Have a special
look at the file parameters:

» "Location of your program file", here this is "fsmLauncher.kmt" filename relative to the project's root dir-
ectory.

How to run an FSM model ?

» "Class qualified name", that is to say the main class of the program.
» "Operation name", that is to say the main operation of the main class.

 "Qperation arguments’, the parameters you want to send to the main operation.

Here, we give the string "../models/samplel.fsm" as a parameter to mainLoadFSM operation to "fsm::Main"
class. By clicking on "Run" button, it will start the execution. Y ou can create yourself some new run config-
urations. Just by left clicking on "Kermeta Application " or "Kermeta Constraint Application” (depending on
the constraint checking you want) and select "New" and fill in the required fields.

Eclipse is slash sensible. It only accepts front slash and no backslash. Then /
fr.irisa.triskell. kermeta.samples.fsm.demo/launcher/fsmLauncher.kmt is a valid filename whereas
\fr.irisa.triskell. kermeta.samples.fsm.demo\launcher\fsmLauncher.kmt is not.

hd Run E x
Create, manage, and run configurations
description du launch mode @
SN .
[f B X 3 3 Name: [IoaderFSm]
[Il pe filter tex l o
. Ifl Common | ~% Java Classpath

& Eclipse Application

Kermeta project (optional filter)
4 Equinox OSGi Framework

1 Java Applet [fmnsa.rnskell.kermeta.demo H Browse l
Java Application File parameters
Ju JUnit

Location of your program file

Jii JUnit Plug-in Test

¢ L [a’fr.in’sa.rn'skell.kermera.samples.fsm.demo.-’launchen’fsmLauncher.kmr l [Browse l
= o5 Kermeta Application

£ checklnvariants Class qualified name

% checklnvariants.kmt_fsm___ Mz [fsm::Main ” Search... l

% determinization Operation name

[mainloadFSM ” Search... l

4% minimization

Operation arguments

£ minimization. kmt_fsm Minim [models? el f l
~ £ Kermeta Constraint Application ~/mode's/sampreZ.1sm

J£ fsmLauncher.kmt_fsm Main_

5 loaderFsmdprepost L

Fe|SWT Annlication Ad
(o] | [
@ Run l [Close
Figure 3.3.

CHAPTER 4

Constraints checking execution
sample

Have alook at the "step" method in the "State" classin the "fsm.kmt" file.

/I Go to the next state
operation step(c : String) : String raises FSMException is

/I Declaration of the pre-condition
pre notVoidlnput is
cl=voidandc!=""

do
/I Get the valid transitions
var validTransitions : Collection<Transition>
validTransitions := outgoingTransition.select { t | t.input.equals(c) }
/I Check if there is one and only one valid transition
if validTransitions.empty then raise NoTransition.new end
if validTransitions.size > 1 then raise NonDeterminism.new end

/I Fire the transition
result := validTransitions.one.fire
end

/I Declaration of the post-condition
post notVoidOutput is
result = void and result !=""

There is a pre condition which says that the character given as a parameter must not be void or empty string.
The post condition says that the result must not be void or empty string. For each "step" method call, the pre
and post conditions will be checked. If there are evaluated as false, the program is aborted otherwise the pro-
gram goes on. Look a the run configuration named "loaderFSM4prepost”. Open the file
(../model s/samplelpostv.fsm) used as parameter for this configuration. Observe the finite state diagram.

.1. Pre condition violation

Execute "loaderFSM4prepost” configuration. When you are asked for a letter , just press enter to send an
empty string. Normally, it should provoke the violation of the pre condition. before loading after loading
State : sl Transition : s1-(c/NC)->s2 State : s2 Transition : s2-(x/y)->s2 Current state : sl give me a letter :
stepping... [kermeta::exceptions::ConstraintViolatedPre:8670] pre notVoidinput of operation step of class
State violated

Constraints checking execution sample

4.2. Post condition violation

Execute "loaderFSM4prepost” configuration. When you are asked for a letter , press ¢ and then press enter.
Normally, the post condition will be violated because the result will be an empty string. before loading after
loading State : s1 Transition : s1-(¢/NC)->s2 State : s2 Transition : s2-(x/y)->s2 Current state : s1 give me a
letter : c ¢ stepping... [kermeta::exceptions::ConstraintViolatedPost:9684] post notVoidOutput of operation
step of class State violated

	Kermeta tutorial
	Table of Contents
	Preface
	Chapter 1. Prerequisites
	Chapter 2. A view on the FSM meta model
	Chapter 3. How to run an FSM model ?
	3.1. An entry point for the program
	3.2. Constraints checking execution or no constraints checking execution
	3.3. Execution without parameters
	3.4. Execution with parameter(s)

	Chapter 4. Constraints checking execution sample
	4.1. Pre condition violation
	4.2. Post condition violation

