
Kermeta language

Reference manual

Zoé Drey
Cyril Faucher

Franck Fleurey
Vincent Mahé
Didier Vojtisek

Abstract

This manual presents the various aspects of the Kermeta language.
This is the reference manual for anybody who want to use Ker-
meta.

Published Build date: 3-November-2010
$LastChangedDate:: 2010-10-25 10:46:57#$

Preface. ... viii

Chapter 1. Introduction to the language .. 1

1.1. Presentation ... 1

1.2. An imperative syntax .. 2

1.2.1. First Program .. 2

1.2.2. Classic features ... 2

1.2.3. Corresponding sections in the Reference chapter 3

1.3. An object-oriented language .. 3

1.3.1. Corresponding sections in the Reference chapter 4

1.4. A model-oriented language .. 4

1.4.1. Associations : toward a first concrete example of a Kermeta model 5

1.4.2. Loading an existing model .. 6

1.4.3. Navigation in a model .. 6

1.4.4. Model type .. 7

1.4.5. Kermeta model reflexively available .. 7

1.4.6. Corresponding sections in the Reference chapter 7

1.5. Aspect-oriented language .. 7

1.5.1. Corresponding section in the Reference chapter 8

1.6. Some "advanced" features ... 8

1.6.1. Functions in Kermeta ... 8

1.6.2. Other advanced features .. 9

1.6.2.1. High level modeling .. 9
1.6.2.2. Other technical features .. 9

Chapter 2. Reference .. 10

2.1. Comments ...10

2.1.1. Simple and multi-line text comments ... 10

2.1.2. Linked comments .. 10

2.2. Escaping reserved keywords ..11

2.3. Operators ..11

2.4. Statements : block, condition, loop ...13

2.4.1. Block statement ... 13

2.4.2. Conditional statement .. 13

2.4.3. Loop Statement ... 14

2.5. File dependency : structuring code ...14

2.5.1. Require ... 14

iii

2.5.2. Accepted require content ... 15

2.5.3. Supported protocols .. 15

2.5.4. Organizing code .. 16

2.6. Using Variables ...16

2.7. Basic types ..17

2.7.1. Primitive types ... 17

2.7.2. Enumeration types ... 18

2.7.3. Local datatype using "alias" .. 18

2.8. Classes and methods ..19

2.8.1. Classes .. 19

2.8.2. Defining operations .. 19

2.8.2.1. Result .. 20
2.8.2.2. Operations as main entry point. ... 21

2.8.3. Initializing classes .. 21

2.8.4. Rationale .. 21

2.8.4.1. No constructor .. 21
2.8.4.2. No operation overloading .. 22

2.9. Inheritance ..22

2.9.1. Using simple inheritance .. 22

2.9.2. Cast ... 23

2.9.2.1. Casting using conditional assignment ... 23
2.9.2.2. Casting using asType ... 24
2.9.2.3. Useful functions when casting ... 24

2.9.3. Using multiple inheritance .. 24

2.9.4. Overriding behavior with methods ... 25

2.9.5. Some limitations .. 26

2.9.5.1. Operation redefinition .. 26
2.9.5.2. Operation specialization .. 27
2.9.5.3. Operation overloading ... 27
2.9.5.4. Conflicts related to multiple inheritance 28

2.10. Genericity ..29

2.10.1. Generic classes ... 29

2.10.2. Generic operations .. 29

2.10.3. Type usable with genericity .. 30

2.11. Exception handling ...30

2.12. Loading and saving models ..31

2.12.1. Prepare a model .. 32

2.12.2. Load a model from an EMF Resource ... 32

2.12.3. Save a model into an EMF Resource .. 33

2.13. Packages ...33

Kermeta language

iv

2.13.1. Definition ... 34

2.13.2. Use of packages .. 34

2.13.3. Syntaxic sugars ... 35

2.14. Collections ..35

2.14.1. Definition and initialization .. 35

2.14.2. Some existing useful functions ... 37

2.14.2.1. Function each ... 37
2.14.2.2. Function forAll .. 38
2.14.2.3. Function select ... 38
2.14.2.4. Function reject .. 38
2.14.2.5. Function collect ... 38
2.14.2.6. Function detect ... 38
2.14.2.7. Function exists ... 39

2.15. Class properties ..39

2.15.1. Attributes (attribute), references (reference) .. 39

2.15.2. properties modifiers ... 40

2.15.3. Association using opposite properties ... 40

2.15.4. Derived properties (property) .. 42

2.15.5. How to access and control the properties in Kermeta 43

2.15.6. Assignment behavior for attribute (and reference) 45

2.16. Objects comparison ..46

2.16.1. equals method ... 46

2.16.2. Comparison for Primitive Types .. 47

2.16.3. Collection comparison .. 48

2.17. Lambda Expressions and functions ..48

2.17.1. Syntax .. 49

2.17.2. Some existing useful functions ... 49

2.17.3. Defining new functions in a class .. 50

2.17.4. Defining lambda expression variables ... 51

2.18. Dynamic evaluation of Kermeta expressions ..52

2.19. Design by contract (pre, post, inv contraints) ...53

2.19.1. Writing a contract ... 53

2.19.1.1. pre – post conditions syntax .. 53
2.19.1.2. Invariant constraint syntax ... 53

2.19.2. Checking your constraints .. 54

2.19.2.1. Checking pre – post condition .. 54
2.19.2.2. Checking invariant .. 54

2.20. Weaving Kermeta code ..55

2.20.1. Textual syntax for merging ... 55

2.20.2. Example 1: Simple Class merge ... 56

2.20.3. Example 2: merge with feature redefinition .. 57

Kermeta language

v

2.20.4. Example 3: merge with operation overload .. 58

2.20.5. Aspect and inheritance ... 58

2.20.6. Aspect and abstract ... 58

2.20.7. Aspect without common base ... 59

2.21. Model type ...59

2.21.1. Definition of a model type ... 59

2.21.2. Using Model types variables ... 60

2.21.3. Model type serialisation .. 60

2.21.4. Model type conformance .. 60

2.21.5. Using Model types in generic classes/operations 61

2.21.6. A more complex example of conformance : FSM variants 61

2.22. Using existing java code in Kermeta ...61

2.22.1. Using extern to call java code ... 62

2.22.2. Requiring jar file to call java code .. 63

2.23. Cloning objects ...64

Chapter 3. Kermeta Metamodel ... 66

3.1. Architecture ..66

3.2. Structure package ...67

3.2.1. NamedElement view .. 68

3.2.2. Type system view .. 68

3.3. Behavior package ..69

3.3.1. Control Structures ... 70

3.3.2. Variables .. 70

3.3.3. Call Expressions ... 71

3.3.3.1. CallSuperOperation .. 71
3.3.3.2. CallVariable .. 72
3.3.3.3. CallResult .. 72
3.3.3.4. CallFeature and SelfExpression ... 72

3.3.4. Assignment ... 73

3.3.5. Literals .. 73

3.3.6. Lambda Expression ... 74

3.4. Viewing Kermeta metamodel ...75

Chapter 4. Kermeta framework ... 76

A. Language keywords. ... 78
B. Known Kermeta tags. .. 81
C. Kermeta / Ecore mapping. ... 83

Kermeta language

vi

List of Figures

1.1. Kermeta positioning ... 1

1.2. A concrete example : a library ... 5

2.1. A simple family tree model .. 23

2.2. : multiple inheritance ... 25

2.3. cs.ecore sample metamodel ..31

2.4. : The Kermeta collections ... 36

2.5. Attributes and references .. 41

3.1. EMOF extension and Kermeta promotion ...67

3.2. Structure package ...67

3.3. NamedElement class diagram ... 68

3.4. Kermeta type system class diagram (the big picture) .. 69

3.5. Behavior package ..70

3.6. Control structure .. 70

3.7. Use of variables ... 71

3.8. use of exceptions ... 71

3.9. Kermeta assignment expression ... 73

3.10. Kermeta Literal Expression ... 74

3.11. Kermeta lambda expressions .. 75

vii

CHAPTER

Preface

Kermeta is a Domain Specific Language dedicated to metamodel engineering. It fills the gap let by MOF
which defines only the structure of meta-models, by adding a way to specify static semantic (similar to OCL)
and dynamic semantic (using operational semantic in the operation of the metamodel). Kermeta uses the ob-
ject-oriented paradigm like Java or Eiffel.

This document gives beginners an introduction to the Kermeta language, then it offers a reference of all the
aspects of the language, including the textual syntax, the metamodeling features and some more advanced
features. Two other chapters present the Kermeta Metamodel and the Kermeta framework.

Important

Kermeta is an evolving software and despite that we put a lot of attention to this document, it may
contain errors (more likely in the code samples). If you find any error or have some information that
improves this document, please send it to us using the bug tracker in the forge: ht-
tp://gforge.inria.fr/tracker/?group_id=32 or using the developer mailing list
(kermeta-developers@lists.gforge.inria.fr) Last check: v1.4.1

Tip

The most update version of this document is available on line from http://www.kermeta.org .

viii

http://gforge.inria.fr/tracker/?group_id=32
http://gforge.inria.fr/tracker/?group_id=32
http://www.kermeta.org/

CHAPTER 1

Introduction to the language

This chapter aims to help you to have a quick overview of most of the features of Kermeta. Then, it gives the
pointers to the detailed sections in the reference chapter. It also gives some small examples that should help
you to understand the basis of the concepts without having to jump to the corresponding detailed section.

1.1. Presentation

Kermeta is a metamodeling language which allows describing both the structure and the behavior of models.
It has been designed to be compliant with the OMG metamodeling language EMOF (part of the MOF 2.0
specification) and Ecore (from Eclipse). It provides an action language for specifying the behavior of models.

Kermeta is intended to be used as the core language of a model oriented platform. It has been designed to be
a common basis to implement Metadata languages, action languages, constraint languages or transformation
language.

Figure 1.1. Kermeta positioning

In a nutshell, Kermeta is :

1

• MOF compliant (EMOF compliant to be precise)

• Model oriented

• Imperative

• Object-Oriented

• Aspect-Oriented

• Statically Typed (100% typesafe)

In addition to these characteristics, it includes some typically model-oriented concepts like associations, mul-
tiplicities or object containment management.

This chapter presents the main features of the Kermeta language. Section 2 presents the general syntax of the
language, sections 3 & 4 give details about the object-oriented and model-oriented features of the language
and finally section 4 provides information about some extra concepts in Kermeta (including aspect orienta-
tion).

With its workbench, it's goal is to provide a support for all Language Driven Engineering activities. It will be
typically used to build tools useful to build software. This includes (but is not restricted to): model checkers,
simulators, model transformations (any kind of transformations including model weavers or compilers).

1.2. An imperative syntax

Kermeta is an imperative language for modeling, with a basic syntax inspired from Eiffel. Code is statically
type checked, and execution is made by an interpreter (a compiler is on the way, for exhausted perform-
ances).

1.2.1. First Program

Even if it is not very useful in our context, since it doesn't show the really interresting structures of the lan-
guage, here is the traditional " Hello world " example you can find in every programming book.

@mainClass "helloworld::HelloworldExample"
@mainOperation "sayHello"
package helloworld;

require kermeta
using kermeta::standard

class HelloworldExample
{

operation sayHello() is
do

stdio.writeln("Hello world, ...")
end

}

1.2.2. Classic features

Introduction to the language

2

Kermeta language includes usual statements like blocks and loops, comments, etc

do
// a loop for getting a text from an user
var s : kermeta::standard::String
from var found : kermeta::standard::Boolean init false
until found
loop

s := stdio.read("Enter a text:\n --> ")
if s.size > 0 then

found := true
else

stdio.writeln("ERROR - Empty text!")
end

end
stdio.writeln("\n You entered: " + s)

end

1.2.3. Corresponding sections in the Reference chapter

All these "classic" imperative features and their syntaxes are described in Chapter 2, Reference. More pre-
cisely in

• Section 2.1, “Comments”,

• Section 2.4, “Statements : block, condition, loop”,

• Section 2.6, “Using Variables”,

• Section 2.3, “Operators”,

• Section 2.2, “Escaping reserved keywords”

1.3. An object-oriented language

Users of modern programming languages, like Java, would feel easy with object-oriented features in Ker-
meta: classes, inheritance, exceptions, and even genericity.

require "truc"
// persons who write documents
class Writer {

attribute name : kermeta::standard::String
}

// generic concept for every document
abstract class Document {

reference author : Writer
attribute text : kermeta::standard::String

}

// a "Document" from the real world
class Book inherits Document {}

// a specialized "Book"
class ChildBook inherits Book {

attribute minimalAge : kermeta::standard::Integer

Introduction to the language

3

}

Such classes can be used for verifications:

// a specialized Exception
class AgeException inherits kermeta::exceptions::Exception {}

abstract class Reader {
operation read(book : ChildBook) : Void is abstract

}

class Child inherits Reader {
attribute age : kermeta::standard::Integer
operation initialize(age : kermeta::standard::Integer) : Child is
do

self.age := age
result := self // return self so we can chain this call directly after a new

end
// an action which triggers an Exception
operation read(book : ChildBook) : Void is
do

if age < book.minimalAge then
raise AgeException.new

end
end

}

1.3.1. Corresponding sections in the Reference chapter

You can get more informations about Kermeta object-oriented features in Chapter 2, Reference. More pre-
cisely in

• Section 2.8, “Classes and methods”

• Section 2.9, “Inheritance”

• Section 2.10, “Genericity”

• Section 2.11, “Exception handling”

• Section 2.13, “Packages”

• Section 2.15, “Class properties”

• Section 2.16, “Objects comparison”

1.4. A model-oriented language

As explained in the Preface and in Architecture, Kermeta extends the MOF. It provides useful means to ma-
nipulate models. The support of model introduces the main difference with "more" traditional programming
languages.

Introduction to the language

4

1.4.1. Associations : toward a first concrete example of a Ker-
meta model

Association is one of the key concepts when using and defining models. It is obviously part of Kermeta.

MOF defines the concept of "Property" which generalizes the notions of attributes, and associations
(composite or not) that you can find in UML. Kermeta syntax also distinguishes these two notions as intro-
duced in Section 2.15, “Class properties”.

As a reminder, the attribute keyword defines a link with containment (a composite association) whereas
the reference keyword just defines an association. As you can see, property declarations are very close to
variable declarations introduced in Section 2.6, “Using Variables”). Each reference may be explicitly linked
to another reference (it is the opposite concept in MOF terminology – see also section Section 2.15.1,
“Attributes (attribute), references (reference) ”).

class Library
{

attribute books : set Book[0..*]
}

class Book
{

attribute title : String
attribute subtitle : String

reference authors : oset Author[1..*]#works
}

class Author
{

attribute name : String
attribute lastName : String

reference works : set Book[0..*]#authors
}

If we represent our Kermeta model in a graphical syntax we obtain the following class diagram (Figure 1.2,
“A concrete example : a library”).

Figure 1.2. A concrete example : a library

Introduction to the language

5

1.4.2. Loading an existing model

Using Eclipse Modeling Framework (EMF), Kermeta can load and save models done with other EMF tools.

/* Initialize the EMF repository */
var repository : EMFRepository init EMFRepository.new

/* Create an EMF Resource, given model and metamodel URIs as String */
var resource : Resource init repository.createResource(myModelURI, itsMetamodelURI)

/* Load the resource */
resource.load

// get elements from the resource
// in this sample, you know that your root element is always a Library,
// so you can directly get the first one
var aLibrary : Libray
aLibrary ?= resource.one // note the conditional assignment using the ?=, if not a Library you'll get Void

In the same way, you can serialize a model, or load, change and save an existing model.

Caution

Your model URI MUST be of the form "platform:/resource/myProject/myModel" or "plat-
form:/plugin/myProject/myModel".

Your metamodel URI MUST be of the form "platform:/resource/myProject/myModel" or "plat-
form:/plugin/myProject/myModel" or an URI registered in the EMF registry.

Caution

Be aware that you CANNOT load kermeta text files (*.kmt). Only xmi files are allowed to be loaded.
Parsing and obtaining a model from a textual syntax is not part of Kermeta. This is the role of other
tools (like sintaks). Technically, it is possible to create some Kermeta operation that will hide this
step, however, this is not the goal of this manual to explain this procedure.

1.4.3. Navigation in a model

Actually, navigating in a model is as simple as using objects in an object-oriented program. However, several
features have been added in order to ease this activity.

For example, thanks to the lambda expressions, the collections of the language are easily manipulated using
lexical closure (select, collect, each, etc). This applies to all the collections of the language, the one you may
define directly but also the one which are used when an Attribute or Reference has a multiplicity greater than
1.

Example (based on the library sample of Section 1.4.1, “Associations : toward a first concrete example of a
Kermeta model”):

var smithBooks : Set<Book> init Set<Book>.new
smithBooks.addAll(

lib.books.select{aLibraryBook |
aLibraryBook.authors.exists{aBookAuthor | aBookAuthor.lastName == "Smith"}})

Introduction to the language

6

In the example above, lib is an instance of Library. It searchs in the books, select the books where the author
last name is "Smith".

1.4.4. Model type

In order to improve reuse of existing code between metamodel variants, the language introduces the notion of
ModelType. It is based on the notion of conformance between two metamodels. This allows to write behavior
that is valid for a given metamodel and that will also work for any conformant metamodel.

TODO write a small illustrative example of a simple printer based on a ModelType : a subset of class dia-
gram of UML

1.4.5. Kermeta model reflexively available

Kermeta has been developed, using MDE principles so it also provides its own metamodel (reflectiveley
available). Details of Kermeta metamodel is available in Chapter 3, Kermeta Metamodel

1.4.6. Corresponding sections in the Reference chapter

You can get more informations about all Kermeta model-oriented features in the Chapter 2, Reference. More
precisely in

• Section 2.12, “Loading and saving models”

• Chapter 3, Kermeta Metamodel

• Section 2.21, “Model type”

1.5. Aspect-oriented language

Since Kermeta is an extension of MOF, a MOF meta-model can conversely be seen as a valid Kermeta pro-
gram that just declares packages, classes and so on but does nothing. Kermeta can then be used to breath life
into this meta-model by incrementally introducing aspects for handling concerns of static semantics, dynamic
semantics, or model transformations.

One of the key features of Kermeta is the static composition operator require allows extending an existing
meta-model with new elements such as properties, operations, constraints or classes. This operator allows de-
fining these various aspects in separate units and integrating them automatically into the meta-model. The
composition is done statically and the composed model is typed-checked to ensure the safe integration of all
units. This mechanism makes it easy to reuse existing meta-models or to split meta-models into reusable
pieces. It can be compared to the open class paradigm. Consequently a meta-class that identifies a domain
concept can be extended without editing the meta-model directly. Open classes in Kermeta are used to organ-
ize cross-cutting concerns separately from the meta-model to which they belong, a key feature of as-
pect-oriented programming. With this mechanism, Kermeta can support the addition of new meta-class, new
subclasses, new methods, new properties, new contracts to existing meta-model. The require mechanism also
provides flexibility. For example, several operational semantics could be defined in separate units for a single
meta-model and then alternatively composed depending on particular needs. This is the case for instance in
the UML meta-model when several semantics variation points are defined.

Introduction to the language

7

Thank to this composition operator, Kermeta can remain a kernel platform to safely integrate all the concerns
around a meta-model. This feature has proved to be extreemly useful in the context of metamodel engineer-
ing.

1.5.1. Corresponding section in the Reference chapter

You'll find more details in the Reference chapter, more precisely in: Section 2.20, “Weaving Kermeta code”

1.6. Some "advanced" features

Kermeta implements several "less common" or advanced features that helps in many situations.

Typically, lambda expressions/functions is a well known concept, very useful in almost all kermeta code.
Even, if you will probably not write your own function, you'll certainly use the existing one defined on col-
lections.

1.6.1. Functions in Kermeta

In order to implement and statically type check OCL-like iterators, Kermeta includes some limited functional
features by implementing lambda expressions.

This is typically used on Collection which provides functions like : each, select, forAll, detect,
...

Example 1: the following code will build a collection of names of the operations that start with "test".

var names : Collection<String>
names := self.getMetaClass.classDefinition.ownedOperation

.select{ op | op.name.indexOf("test") == 0}

.collect{ op | op.name }

Example 2: Providing a time function on Integer

operation times(body : <Integer->Object>) : Void is do
from var i : Integer init 0
until i == self
loop

body(i)
i := i + 1

end
end

this allows to write code like :

var res : Integer
10.times { i | stdio.writeln(i.toString + ": Hello") } // Say 10 times Hello

See sections "Lambda Expressions and functions" and Lambda Expression for detailed informations.

Introduction to the language

8

1.6.2. Other advanced features

1.6.2.1. High level modeling

Kermeta most recent versions embed advanced concepts like Lambda Expressions and functions, Dynamic
evaluation of Kermeta expressions, Design by contract (pre, post, inv contraints) or Weaving Kermeta code.

1.6.2.2. Other technical features

As Kermeta language is implemented upon Eclipse and Java, you can call Java code inside Kermeta
code.(see Section 2.22, “Using existing java code in Kermeta”)

There is some special behavior regarding object comparison or cloning.

Introduction to the language

9

CHAPTER 2

Reference

The reference sections are ordered in four parts: the imperative syntax (1-6), the object-oriented (7-10) and
the model-oriented (11-15) features, the advanced concepts (16-21).

2.1. Comments

Warning

Comments are a little bit particular in the Kermeta language because they are not all ignored by the
interpreter. There are two kinds of comments: the first (syntax : // foo , /* bar * /) is only associated
to the text editor view in which the user edits his Kermeta file, and the second one(syntax : /
** foo */ or @tag_name "tag value") is translated into a MOF tag linked to structures described in
the Kermeta model. The first one, is a text decoration, the second one is part of the Kermeta model.

2.1.1. Simple and multi-line text comments

Like in many languages, Kermeta provides two ways to add comments in your models:

• simple line comments, i.e text line beginning with //

// This is a single line comment

• multi-line comments, i.e text between /* */. Be careful with this notation : the opening syntax must not
have juxtaposed stars ("/**"), otherwise it will be considered as a linked comment (see Section 2.1.2,
“Linked comments”), i.e a comment that is part of the Kermeta program as a model.

/* This a multi line comment
all these lines are comments
this line too. */

2.1.2. Linked comments

Kermeta provides a way to define named and unnamed annotations, that have to be defined just above any
model element among Package, ClassDefinition, Property, Operation. Such annotations cor-
respond to MOF tags, and are linked to the elements which immediately follows.

10

To define a named annotation, you have to use a special symbol "@", whereas an anonymous annotation has
to be written between /** and */

Example 1: you can define an annotation to describe the role of a property

@usage "count the number of ..."
reference myCounter : Integer

Example 2: you can document your classes and operation using /** ... */

/** * This is a documentation tag for the class "myClass" */
class MyClass {

/** This is a documentation tag for myOperation */
operation myOperation() is do

// Unlinked comment
end
@desc "This is a named annotation for thisOperation"
operation thisOperation() is do

/* This is an unlinked comment */
end

}

2.2. Escaping reserved keywords

Kermeta textual syntax uses several keywords like class, attribute, reference, result, etc.
(Please see Appendix A, Language keywords at the end of this document to get the complete list of Kermeta
keywords.)

This doesn't mean you cannot use these words for your own model. Moreover, this is only a textual syntax
limitation.

So Kermeta syntax allows you to use the word you want, you simply have to prefix it with a tilda ~.

This example is valid even if we use "class" and "attribute" which are keywords in the language:

class ~class {
attribute ~attribute : kermeta::standard::String
attribute ~class : kermeta::standard::String

}

2.3. Operators

Priority Operator Operand types Semantic

1

+ Numeric

String

Add two numeric values

Concatenate two strings

Reference

11

Priority Operator Operand types Semantic

1 - Numeric Subtract two numerous values

2 * Numeric Multiply two numeric values

2 / Numeric Divide the first operand by the second

Notice that most of these arithmetic operators are only defined for numeric primitive types like Integer. Ex-
cept the + operator which is a concatenation operator for String, they are not applicable on String, Boolean
nor collections

Priority Operators Operand Types Semantics

3 == All True, if op1 value's is the same that op2 value's

3 != All True if op1 value's is different of op2 value's

3 < Numeric True if op1value's is strictly smaller than op2
value's

3 <= Numeric True if op1 value's is smaller or equals than op2
value's

3 > Numeric True if op1 value's is strictly greater than op2
value's

3 >= Numeric True if op1 value's is greater or equals than op2
value's

Priority Operators Operands Types Semantics

4 and Boolean True if op1 and op2 are evaluated to true

4 or Boolean True if one of the operators is evaluated to true

4 not Boolean True if op is false.

Note

The == and != can be applied to any Object, in this case, the comparison is based on the equals
operation defined for the object and thus can be redefined to compare only the values of the ob-
jects. To be sure to compare the identity of objects even if they redefine the operation equals, you
need to compare their oid (ie. their identifiers).

See Section 2.16, “Objects comparison” for more details about object comparison.

Reference

12

2.4. Statements : block, condition, loop

2.4.1. Block statement

Kermeta provides a block notion to manage scope of variable. Instruction of the block have to be inserted
between do and end keywords. Theses two keywords may be omitted for the conditional and for the loop
structures.

A variable could only be accessed in the block where it was defined and in its sub blocks:

do
var v1 : Integer init 3
var v2 : Integer init 2
do

var v3 : Integer
v3 := v1 + v2

var v2 : Integer // error : v2 is already declared in the upper block
end
var v4 : Integer init v3 // error : v3 is unknown here

end

2.4.2. Conditional statement

Kermeta's conditional statement is composed of at least two elements : a boolean expression and a block that
is executed if the boolean is evaluated to true. You can add a third element, with the else keyword, that is
executed if the boolean expression is evaluated to false.

Example 1: if..then..else block

var v1 : Integer init 2
var v2 : String init "blah"

if v1 > 5 then v1 := v1-5

if v1 == 2 then
v2 := v1
v1 := v2 + v1

else
v1 := 0

end

The if statement is an expression (see Chapter 3, Kermeta Metamodel). As any expression in Kermeta, it
can return a value. The return type of the if statement must be a super type of the values "returned" by both
then and else blocks (otherwise the type checker will send an error). The values considered as the result
of the evaluation (the "returned" values) of the if statement are the last evaluated statement inside then or
else block

Example 2: conditional is an expression

var s : String
s := if false then "a" else "b" end

Reference

13

Example 3: a more complex conditional

var x : String
var y : Integer init 5
x := if y < 3 then

stdio.writeln("hello")
"a"
else
"b"
"c"
end // The String "c" will be the value of x

2.4.3. Loop Statement

Here is a sample of a typical loop in Kermeta.

var v1 : Integer init 3
var v2 : Integer init 6

from var i : Integer init 0
until i == 10
loop

i := i + 1
end

Note

Unlike Java, there is no exit, break or continue function in Kermeta.

See Section 2.14, “Collections” for functions offering iterator-like scanning.

2.5. File dependency : structuring code

Kermeta code can be quite large, and invloves many classes in different metamodels. The main mechanism
used to organise your code is the require statement.

2.5.1. Require

When you need to refer explicitly another entity defined in another file, you have to use the require prim-
itive. It allows loading definitions of an other Kermeta file when file is processed. In the following example,
we define a class C which inherits from the A class previously defined.

// file : MyPackage-part1.kmt
package subPackage1;

class A
{
// ...

}

// file : MyPackage-part2.kmt

Reference

14

package MyPackage;
require "MyPackage-part1.kmt"

class C inherits subPackage1::A
{

// ...
}

Note

In most case, the order of the declaration in not important. The only exception is a very rare situ-
ation related to aspects (see Section 2.20, “Weaving Kermeta code”).

Note

You can create cyclic dependencies of files, the environment will deal with that.

2.5.2. Accepted require content

You can require different kind of entity

Obvioulsy, you can require Kermeta textual syntax, ie. *.kmt files

You can require Kermeta models, ie. *.km files.

You can require Ecore models, ie. *.ecore files. These models can then be used as if they were written in
Kermeta. In order to add behavior to the classes defined in .ecore files you may : use the weaving to dynam-
ically weave behavior to the ecore, or roundtrip using the button action in the workbench
(ecore->kmt->ecore) to statically add the behavior (as EAnnotations) into the ecore file.

Warning

A special attention must be put when requiring resources. It is not allowed to get several versions of
the same class that comes from several required files. Kermeta cannot know which version it must
use, so you'll get an error.

A typical error, is to require both an ecore file and the registered version of it. They represent two
distinct resources in memory.

A more clever error, is when the two versions are hidden inside an erroneous ecore file which uses
several ways to access some metaclass and actually is not consistent. (ex: you find references to
both http://www.eclipse.org/emf/2002/Ecore and plat-
form:/plugin/org.eclipse.emf.ecore/model/Ecore.ecore in the ecore file or one of the dependent files)

In order to use the seamless java import (still prototype in v0.4.2), you can require a jar file. It will automat-
ically convert the java into a Kermeta representation in order to be able to call java code as if it was written in
Kermeta. see Section 2.22, “Using existing java code in Kermeta” for more details.

2.5.3. Supported protocols

Kermeta reuse some of the protocols provided by Eclipse.

Relative path. You can use a path relative to the current file using the normal syntax (./ , ../, etc)

Reference

15

Eclipse workspace relative path. In Eclipse, you can use a path relative to the user's workspace. In that case
the path looks like platform:/resource/your_project_name/path_to_the_file

Eclipse plugin relative path. In Eclipse, you can use a path that search in the installed plugins. In that case
the path looks like platform:/plugin/plugin_name/path_to_the_file

Eclipse workspace or plugin relative path. When deploying Kermeta code, it is sometime interesting to
search in both the user's workspace and in the plugins. In that case the path looks like plat-
form:/lookup/plugin_or_project_name/path_to_the_file

Note

This platform:/lookup/ is available in Kermeta only, and only in the require statement.

Be careful, using the current version (Kermeta 1.3.1) since a deployed plugin using this protocol
may be modified by the user's workspace content!

Registered Ecore. A variant of requiring an ecore file is to require a registered EPackage. When Eclipse
deploys an ecore model plugin, it also registers the EPackage using a unique identifier (nsuri) in order to re-
treive it quickly. In Kermeta you can also use this nsuri into the require statement. This approach is useful be-
cause you can be sure that you require the very same model as Eclipse use to load and save models of that
sort. For example, instead of requiring ecore.ecore you may use require "ht-
tp://www.eclipse.org/emf/2002/Ecore". This also works for all other registered metamodels
(Your own registered metamodel, UML metamodel, etc). Kermeta user interface provides a view that display
all registered EPackages and their nsuri.

2.5.4. Organizing code

Kermeta lets you organise your code the way you prefer. There is no predefined organisation of your code,
but the language and the workbench proposes various mechanisms and tools to structure it according to your
needs and the style you wish for your code. Typically if you use Kermeta internal weaver (see Section 2.20,
“Weaving Kermeta code”), manually transform your ecore into Kermeta, eventually weaving the ecore using
the merge button available on the worbench.

For example, you can put all your classes into a single file (like in Ecore, every classes is in the .ecore file) or
you may create a file for each of them and then use the require to indicates that they must know each oth-
er. You can also use an organisation like java, with a file per class and a directory per package.

2.6. Using Variables

Whenever you need a data locally to a block because it doesn't goes into a class attribute or reference, you
can use a local variable.

A variable is defined by a name and by a type. If needed, the name of the variable can be escaped using the
tilda (~)

Declaring a variable:

var foo : String // This is a variable declaration

In the following example, we define 3 variables of type integer. The first is initialized with the "14" literal

Reference

16

http://www.kermeta.org/documents/ui_user_guide/

value, the second is initialized with an expression using v1. For the last variable, we use a multiplicity nota-
tion to specify an ordered set of integer (see Section 2.14, “Collections” and Section 2.15, “Class properties”
for more information on sets).

do
var v1 : Integer init 14
var v2 : Integer init 145 * v1

var tab : Integer[0..*] init kermeta::standard::OrderedSet<Integer>.new
v1 := v2/v1

end

Be careful to the multiplicity, when you create a variable with multiplicity, you have to initialize it with a
collection. Then to use its content, you need to use the collection operation like add, addAll, remove, select,
etc. If you use the assignment := it will replace your collection.

2.7. Basic types

2.7.1. Primitive types

Kermeta implements a few primitive types. By primitive types, we mean types that are basic to any language,
i.e integer, and that have a literal value. See below table.

Name Description Literal Example

Integer Represents integer numeric value like 10 or 12.
(« int » data type in Java)

101, 12, 14, -45, -123

String Represents a string of like « helloworld »
(« String » data type in Java)

"helloworld", "this is a string
!!!"

Boolean Represents a true/false value. (« boolean »
data type in Java)

true, false

// Simple datatypes examples
var myVar1 : Integer init 10
var myVar2 : Integer
var myVar4 : String init "a new string value"
var myVar5 : boolean

Kermeta also supports some other primitive types like Float and Character, but they currently don't have a
surface syntax for their literals. The way to get them is to use the convertion methods available on String (for
both of them) or Integer (for Float).

For example:

var c : Character init "f".elementAt(0)
var r : Real init "4.5".toReal

Reference

17

2.7.2. Enumeration types

You can define enumerations using the following syntax. Note that each enumeration literal must end with a
";".

enumeration Size { small; normal; big; huge; }

You can manipulate enumerated variables and literals with classical operators such as in the following ex-
ample.

var mySize : Size
if (mySize == Size.small) then

stdio.writeln("This is small !")
end

Note

Enumeration is a concept of the same level as Class, they must both be defined in a package.

2.7.3. Local datatype using "alias"

In Kermeta, you can define your own datatype based on existing types without a hard dependency like inher-
itance.

This is done using the alias syntax.

Ex:

alias MyString : kermeta::standard::String;

In this sample, MyString has all the behavior of kermeta::standard::String but is declared locally. This means
that you don't have any dependency to the framework, even to the String in the framework.

Obviously you can reuse existing type names :

alias String : kermeta::standard::String;

This will create a new type String in your package with the behavior of String in the framework.

The definition of an alias is different from the use of "using" statement (as defined in Section 2.13.3,
“Syntaxic sugars”), when you write

using kermeta::standard

you simply defined a syntactical shortcut allowing you to access any definition in this package from within
this file.

Wheras defining an alias allows you to access this new definition from another package if needed.

Tip

Reference

18

It is interesting to redefine your own datatype for all the standard type you use in your metamodel,
so when you convert the file into ecore in order to have serialisation, you won't have any depend-
ency to framework.ecore (which is the ecore version of the framework where Kermeta standard
type) This allow a lazy coupling of the type definitions.

2.8. Classes and methods

2.8.1. Classes

As introduced in the "Hello world" example (see Section 1.2.1, “First Program”), Kermeta is an object-ori-
ented language. Kermeta provides all MOF concepts like properties, attributes, package. In addition, it
provides a body to operations and derived properties.

Classes and abstract classes can be defined in a Java-like way. Class definition must be placed into brackets
as it is in the following example.

// an empty simple class
class myFirstClass
{

}

// a simple abstract class
abstract class MyAbstractClass
{

}

Additionally, for better code robustness, and more user-friendly programming, classes can use the genericity
mechanisms (see Section 2.10, “Genericity” for more information).

// This is a parametric class
class A<G> {
}

// This is the type variable binding : G is binded with Integer
var a : A<Integer>
a := A<Integer>.new

There are some limitations in regards to Java. For example, you cannot define nested classes in Kermeta.
Kermeta offers the same structural concepts than MOF language.

2.8.2. Defining operations

Kermeta provides a way to add operational (action) semantics to your metamodels. For that, you can define
operations with their body, as in a classical programming language. You can also specify abstract operations
(they have no body). Kermeta requires that every class that contains an abstract operation must be declared as
an abstract class.

In the following example, we define some operations, based on a visitor pattern implementation

class Inventory

Reference

19

{
operation visitLibrary(l : Library) is
do

writeln("Inventory : ");
l.books.each(b : Book | b.accept(self))
writeln("----")

end

operation visitBook(b : Book) is
do

stdio.write("Book : ", b.title, " by ")
b.authors.each(a : Author | a.accept(self))

end

operation visitAuthor(a : Author) is
do

stdio.write(a.name, " ", a.lastName)
end

}

class Library {
// ...
operation accept(visitor : Inventory) is
do

visitor.visitLibrary(self)
end

}

class Book
{

// ...
operation accept(visitor : Inventory) is
do

visitor.visitBook(self)
end

}

class Author
{

// ...
operation accept(visitor : Inventory) is
do

visitor.visitAuthor(self)
end

}

In this small example we define an Inventory class which can go over the library structure and print
books informations. For that, we apply the visitor GoF pattern's on the library structure defining an accept
method in every library structures.

2.8.2.1. Result

The special variable result is used to store the value that will be returned by the operation.

operation getName() : String is
do

result := self.name
end

Note

This is different of the return in java, since it doesn't end the block. Other instructions can be used

Reference

20

after the result assignment.

2.8.2.2. Operations as main entry point.

When you run a Kermeta program you'll start from an operation. The main operation that you want to run can
have any number of parameters, whose types must be only and only String. For operations that are not inten-
ded to be run, you can put any type of parameters.

Technically, if you use Kermeta inside Eclipse, when you will ask it to run your operation, the interpreter
will implicitely instanciate the class containing this operation, and then will call this operation.

Example: 3 different kinds of "runnable" operations

class A{
operation main0() is do

// do something
end
operation main1(arg1 : String) is do

// do something with 1rst argument
end
operation main3(arg1 : String, arg2 : String) is do

// do something with 1st and 2nd arguments
end

}
// If you ask to launch main0, Kermeta interpereter will create an instance of A and will run main0 on it.

2.8.3. Initializing classes

Kermeta doesn't use constructors.

However in some situation, you may need to provide some initialization operation. The best approach is
simply to declare an operation which will return self after having done the initialization work.

class A
{

attribute name : String
operation initialize(name : String) : A is do

self.name := name
end

}

// now you can use it easily in one line
var aA : A init A.new.initialize("hello")

2.8.4. Rationale

Here are some explanation about some design choice of Kermeta classes.

2.8.4.1. No constructor

Reference

21

This is because of the compatibility with EMOF and Ecore. In those metalanguages, the user must always be
able to create object (except if they are declared abstract), it cannot rely on a action language (since they don't
define one). In addition, we want that all Meta tool be able to create the object the same way, so, as Ecore
doesn't provide constructor with its editors, then neither does Kermeta.

However, you can easily add an init or myInitialize operation that will take as many parameters as
you want. Even better, you can use a Builder or a Factory design pattern.

aspect class ClassFromMyEcore {

operation init(myParam : String) : ClassFromMyEcore is do
// assign myParam to some attribute
self.name := myParam
// return self for easier use
result := self

end
// now you can create and initialize this class in one line
// var foo : ClassFromMyEcore init ClassFromMyEcore.new.init("foo")

}

2.8.4.2. No operation overloading

In order to simplify multiple inheritance management, Kermeta allows only one operation or property with
the same name in a given class.

2.9. Inheritance

As Kermeta is object-oriented, it supports inheritance. Like its basis EMOF, it support both, simple and mul-
tiple inheritance.

2.9.1. Using simple inheritance

abstract class Person
{

attribute name : string
attribute lastName : string

reference father : Male#children
reference mother : Female#children

}

class Male inherits Person
{

reference children : oset Person[0..*]#father
reference wife : Female[0..1]#husband

}

class Female inherits Person
{

reference children : oset Person[0..*]#mother
reference husband : Male[0..1]#wife

}

Reference

22

In this example, we define a simple model which represent simples family trees. Here, persons are defined by
their name and last name. Each person have a father and mother and respectively might have children. The
figure representing this example is Figure 2.1, “A simple family tree model”

Figure 2.1. A simple family tree model

2.9.2. Cast

As Kermeta is strongly typed, you cannot assign or pass something of the wrong type.

For example :

class A {
}
class SubA inherits A {
}
class AnotherSubA inherits A {
}

// ...
var aA : A init SubA.new
var aSubA : SubA
aSubA := aA // doesn't work because not type safe

In this situation you must use one of the following methods : conditional assignment or asType

2.9.2.1. Casting using conditional assignment

The conditional assignment ?= allows to assign only if the passed object is of the correct type. If not of the
correct type, the assigned value will simply be Void.

aSubA ?= aA // works

Reference

23

var aAnotherSubA : AnotherSubA
aAnotherSubA ?= aA // works too, but has been assigned Void and not the value

This still propose some control on the types and won't accept all kind of cast, for example, you cannot condi-
tionaly assign if you don't have a common supertype.

class B {
}
// ...

var aB : B
aB ?= aA // doesn't work because not type safe

2.9.2.2. Casting using asType

You can also use the operation asType to cast your value. This one use a syntax which is shorter in some
situation, since you don't have to create an intermediate variable before passing the casted value to an opera-
tion. However, the drawback is that, if it fails to cast, then it will raise an exception.

class C {
operation needASubA(sa : SubA) : Void is do

// do something
end

}
// ... typical code using ?=
var aC : C init C.new
aC.needASubA(aA.asType(SubA))

2.9.2.3. Useful functions when casting

In complement you can use the isVoid operation (available on every object) to test the result of a condi-
tional cast. Or you may use the isKindOf or the isInstanceOf operations to test if the calling object
has the same type of the given class before the assignment/asType. The isKindOf operation returns true
if the calling object has exactly the same type than the given class. The isInstanceOf operation returns
true if the calling object has the exact type or one of its super type than the given class.

2.9.3. Using multiple inheritance

class Parent
{

reference children : oset Child[0..*]#parent
}

class Child
{

reference parent : Parent#children

}

class Male { }

Reference

24

class GrandFather inherits Parent, Male
{

boolean healthy : Boolean
}

The above example defines a class "GrandFather" that inherits at the same time the class "Parent", and the
class "Male". Its graphical representation is shown in below figure.

Figure 2.2. : multiple inheritance

2.9.4. Overriding behavior with methods

In the following sample, when an operation is declared for the first time (in the parent class Person), it uses
the operation keyword. Then, whenever you override it, you will have to use the method keyword.

Note

In the sample,Person and adopt are abstract, but this has no influence on the operation-method
keywords rule, it would have been the same even if Person was not abstract or if adopt had a beha-
vior in this class.

abstract class Person
{

attribute name : String
reference father : Male#children
reference mother : Female#children
operation adopt(child : Person) is abstract}

class Male inherits Person
{

reference wife : Female#husband
reference children : oset Person[0..*]#father method adopt(child : Person) is do children.add(child)

if not wife.children.contains(child) then child.father := self wife.adopt(child)
end end}

Reference

25

class Female inherits Person
{

reference husband : Male#wife
reference children : oset Person[0..*]#mother method adopt(child : Person) is do children.add(child)

if not husband.children.contains(child) then child.mother := self
husband.adopt(child)

end end}

2.9.5. Some limitations

A MOF class can have operations but MOF does not provide any way to describe the behavior of these oper-
ations. Furthermore MOF does not provide any semantics neither for operation call nor for operation inherit-
ance and redefinition. This section investigates how, while weaving actions into MOF, MOF semantics can
be extended to support behavior definition and extension mechanisms provided by the action language. This
implies answering several questions concerning redefinition and dispatch.

2.9.5.1. Operation redefinition

MOF does not specify the notion of overriding an operation because from a structural point of view it does
not make any sense. To stick to MOF structure one can argue that redefinition should be forbidden in an ex-
ecutable MOF. This is the simplest solution as it also solves the problem of the dynamic dispatch since a
simple static binding policy can be used.

However, operation redefinition is one of the key features of Object-Oriented (OO) languages. The OO
paradigm has demonstrated that operation redefinition is a useful and powerful mechanism to define the be-
havior of objects and allow for variability. This would be very convenient to properly model dynamic se-
mantic variation points existing in e.g. UML state-charts. For this reason we believe that an important feature
of an executable MOF is to provide a precise behavior redefinition mechanism. The choice of the operation
overriding mechanism must take into account the usual problem of redefinition such as method specialization
and conflicting redefinitions related to multiple inheritance.

class A
{

operation m1() is do
// Some behavior

end

// operation m2 is abstract
operation m2() is abstract

}

class B inherits A
{

// method m1 inherits operation m1 from A
method m1() is do

// Behavior redefinition
end

method m2() is do // Implementation of the abstract method
end

}

Reference

26

Table 2.1. Operation redefinition in Kermeta

Note

Notice in that sample that method redefinition uses the method keyword instead of operation.

2.9.5.2. Operation specialization

The issue of choosing semantics for operation overriding has been widely studied for the design of OO lan-
guages (cf. M. Abadi and L. Cardelli, A theory of objects, Springer). However, OO languages have not ad-
opted a unique solution to this problem. In this context, any language that defines an operation overriding
mechanism should define precisely the solution it implements.

The simplest approach to overriding is to require that an overriding method has exactly the same signature as
the overridden method. That is that both the type of the parameters and the return type of the operation
should be invariant among the implementations of an operation. For the sake of simplicity this is the solution
we have chosen for the current version of Kermeta.

However, this condition can be relaxed to allow method specialization, i.e. specialization on the types of
parameters or/and return type of the operation. On one hand, the return type of the overriding method can be
a sub-type of the return type of the overridden method. Method specialization is said to be covariant for the
return types. On the other hand, the types of parameters of the overriding method might be super types of the
parameters of the overridden methods. Method specialization is thus contravariant for the parameters.

In practice languages can allow method specialization only on the return type (this is the case of Java 1.5) or
both on parameters and return type (this is the case of Eiffel). Among these solutions, we may choose a less
restrictive policy then strict invariance for future versions of Kermeta in order to improve the static type
checking of Kermeta programs.

2.9.5.3. Operation overloading

Overloading is not allowed in Kermeta. This mechanism allows multiple operations taking different types of
parameters to be defined with the same name. For each call, depending on the type of the actual parameters,
the compiler or interpreter automatically calls the right one. This provides a convenient way for writing oper-
ations whose behaviors differ depending on the static type of the parameters. Overloading is extensively used
is some functional languages such as Haskell and has been implemented in OO languages such as Java or C#.
However it causes numerous problems in an OO context due to inheritance and even multiple inheritance in
our case [REF?]. It is not implemented in some OO languages such as Eiffel for this reason, and that is why
we chose to exclude overloading from Kermeta.

class A
{

method m(i : Integer) is do
// [...]

end
method m(s : String) is do // this is not allowed in Kermeta !!!

// [...]
end

}

Reference

27

2.9.5.4. Conflicts related to multiple inheritance

This is also a classical problem that has been solved in several OO languages. There are mainly two kinds of
conflicts when a class inherits features from several super-classes:

• Several features with the same name might be inherited from different super classes causing a name clash.

• Several implementations of a single operation could be inherited from different super classes.

There are two kinds of solutions to resolve these conflicts. The first one is to have an implicit resolution
mechanism which chooses the method to inherit according to an arbitrary policy. The second one is to in-
clude in the language constructions that allow the programmer to explicitly resolve conflicts. In Eiffel, for in-
stance, the programmer can rename features in order to avoid name clashes and can select the method to in-
herit if several redefinition of an operation are inherited from parent classes.

In the current version of Kermeta, we have chosen to include a minimal selection mechanism that allows the
user to explicitly select the inherited method to override if several implementations of an operation are inher-
ited. This mechanism does not allow resolving some name clashes and thus reject some ambiguous programs.
For the future version of Kermeta we plan to include a more general mechanism such as traits proposed by
Schärli et al. In any case we believe the conflict resolution mechanism should be explicit for the programmer.

class O
{

operation m() is abstract
}

class A inherits O
{

method m() is do
// [...]

end
}

class B inherits O
{

method m() is do
// [...]

end
}

class C inherits A, B
{
// "from" : an explicit selection of the//implementation to inherit

method m() from A is do
// [...]

end
}

Table 2.2. Explicit selection of super operation in Kermeta

Reference

28

2.10. Genericity

One of the core characteristics of Kermeta is to be statically typed. In order to allow static typing of OCL-like
expressions, a few modifications had to be made to the EMOF type system (Please refer to paper Weaving
Executability into Object-Oriented Meta-Languages by P.A. Muller et al., presented at the Models05 confer-
ence).

As a result to these modifications genericity support has been added into Kermeta. Like Eiffel and Java 5,
Kermeta supports generic classes and generic operations. This section gives on overview of these concepts in
Kermeta.

2.10.1. Generic classes

In Kermeta classes can have a set of type parameters. These type variables can be used in the implementation
of the class as any other type. By default a type variable can take as value any type; but a type variable can
also be constrained by a type: in that case, this type variable can only be substituted by a sub-type of this
type. The following code demonstrates how to create generic classes.

// A class with a type variable G that can be bound with any type

class Queue<G>
{

reference elements : oset G[*]

operation enqueue(e : G) : Void is do
elements.add(e)

end

operation dequeue() : G is do
result := elements.first
elements.removeAt(0)

end
}

// A class with a type variable C that can be bound with any sub-type of Comparable

class SortedQueue<C : Comparable> inherits Queue<C>
{

method enqueue(e : C) : Void is do
var i : Integer
from i := 0
until i == elements.size or e > elements.elementAt(i)
loop

i := i + 1
end
elements.addAt(i, e)

end
}

2.10.2. Generic operations

Reference

29

Kermeta operations can contain type parameters. Like type variables for classes these type parameters can be
constrained by a super type. However, unlike for classes, for which the bindings to these type parameters are
explicit, for operations the actual type to bind to the variable is statically inferred for each call according to
the type of the actual parameters.

class Utils {
operation max<T : Comparable>(a : T, b : T) : T is do

result := if a > b then a else b end
end

}

Note

Notice in that sample that even the "if" is an expression that can return a value that is assigned here
to the special variable "result".

2.10.3. Type usable with genericity

Actually, all types can be used as a parameter of a generic class or generic operation. More, the ModelType,
is really useful when combined with generics. see Section 2.21, “Model type”

2.11. Exception handling

Kermeta provides also an exception mechanism. You can define a "rescue" block to manage errors occurring
during the execution of another block. Exception mechanism is very close to the Java Exception mechanism.

Example 1: a simple exception raising

do
var excep : Exception

excep := Exception.new
stdio.writeln("Throwing an exception ! ")
raise excep

end

Any block can then rescue exceptions.

Example 2: rescue block

var v1 : Integer init 2
var v2 : Integer init 3

do
var v3 : Integer
v3 := v1 + v2

rescue (myConstraintError : kermeta::exceptions::ConstraintViolatedInv)
// something with myConstraintError
// ...

rescue (myError : Exception)
// something with myError
// ...

end

Reference

30

Tip

do not hesitate to create "do .. end" block into another block if you want to check for an exception
only in a part of the code. This also works if you want to rescue code from within a rescue code.

2.12. Loading and saving models

This section explains how to load and save (deserialize and serialize) an EMF model in Kermeta. For this
purpose, we will use the following small example :

Reference

31

1in this case, don't forget to put the protocol, i.e. platform:/, file:/, etc.

Figure 2.3. cs.ecore sample metamodel

Note

Loading and saving model has it own tutorial. It provides more information in a step by step ap-
proach. See the EMF tutorial at http://www.kermeta.org/documents/emfTutorial/

2.12.1. Prepare a model

The user will refer to Eclipse documentation for the creation of an EMF model from its ECore meta-model.
We suggest to use the Wizard samples to create, at the first hand, an Ecore meta-model, and then, at the
second hand, instances of this Ecore meta-model, using the generated EMF reflexive editors.

Once you created the ECore meta-model, please check that you correctly filled the property "Ns URI" of
the root package of the Ecore meta-model, otherwise the resource load will fail. This NsURI must equal the
real path of your metamodel. (You can modify this property through the Properties View of your meta-mod-
el)

2.12.2. Load a model from an EMF Resource

In the current version of the EMF resource loader, you have to prepare your EMF Resource following these
rules :

• At the top of the source code where you will access your model, don't forget to add require
"your_metamodel.ecore" so you can tell Kermeta that you will create/load/manipulate instances of
these metaclasses.

Alternatively, you can use the Kermeta version of your metamodel using require
"your_metamodel.kmt" or require "your_metamodel.km".

In this case, be careful that your kmt required metamodel is strictly equivalent to the ecore version of your
metamodel that is used in createResource method.

• Then, create a repository and the resource that will contain the model instance that you want to load. In the
following code example, uri stands for the uri (as relative or absolute path1) of the model instance, and
mm_uri is the uri of the meta-model of the model instance.

@mainClass "root::TestCSLoading"
@mainOperation "main"

package root;

require kermeta
require "cs.ecore"

using kermeta::standard
using kermeta::persistence

class TestCSLoading
{

operation initialize(uri : String, mm_uri : String) : Set<Object> is do
/* Initialize the EMF repository */
var repository : EMFRepository init EMFRepository.new
/* Create an EMF Resource */

Reference

32

http://www.kermeta.org/documents/emfTutorial/

var resource : Resource init repository.createResource(uri, mm_uri)
/* Load the resource */
resource.load
/* Get the loaded __root__ instances (a Set<Object>) */
result := resource // a resource is a collection of objects contained

end

• Once you loaded your EMF resource, you can get its attribute instances, that contains all the objects
that you created through your EMF generated reflexive editor. Now you can "visit" your instances,
provided you "visit" them according to their types. In the simplest way, you can make very basic tests to
display your instances content, as in the following example, which visit the objects of resource instances
which types are cs::Template and cs::Decision.

operation main() is do
var instances : Set<Object> init self.initialize("./test.cs", "./cs.ecore")
instances.each{ o |

if (o == void) then stdio.writeln("Void object!")
else

stdio.writeln("---------------------------------")
stdio.writeln("Objet : " + o.getMetaClass.typeDefinition.qualifiedName

+ " (" + o.getMetaClass.typeDefinition.ownedAttribute.size.toString+ "attr.)")
end
var template : cs::Template // Print instances which type is cs::Template
if (cs::Template.isInstance(o))
then

template ?= o
stdio.writeln(" name : " + template.name)
stdio.writeln(" decision : " + template.decision.toString)
stdio.writeln(" content : " + template.content) stdio.writeln(" referer : " + template.referer.toString)

end
// Print instances which type is cs::Decision
if (cs::Decision.isInstance(o))
then

decision ?= o
stdio.writeln(" name : " + decision.name)

end
}

}

If your resource is dependent of other resources and that EMF succed to load it, the Repository that was used
to load your resource will automatically load all these dependent resources.

2.12.3. Save a model into an EMF Resource

To save a model, simply add the model elements in a Resource then call the save operation. All model ele-
ments contained by these added elements will also be saved in the Resource.

You can split your model in several files by using several resources, but you need to make sure that they all
belong to the same Repository. Otherwise, you'll get at best a Dangling exception, or worse create inconsist-
ent files.

2.13. Packages

Reference

33

2Each Kermeta file(.kmt) must declare a package directive.

2.13.1. Definition

Kermeta provides package to structure models. So you can define packages and sub-package as deep as you
want. There are two main ways to do this, as shown in examples 2 and 3 (below). If you want to define some
classes in a package you may define them in a specific file and start this file with a package naming directive
(followed by a semi-colon) like in the following example2.

Example 1: 1 file.kmt == 1 package naming directive

// My file
package MyNewPackage;

class A {
// ...
}

class B {
// ...
}

Here, classes A and B are defined in a package called "MyNewPackage". All classes defined in this file are
under the scope of this package.

You can also define explicitly sub-packages using braces (see the following example):

Example 2: Defining subpackages using braces

// file : MyPackage-part1.kmt
package MyPackage;

package subPackage1
{

class A
{

// ...
}

}

package subPackage2
{

class B
{

// ...
}

}

In this example, we define a main package called "MyPackage" which contains 2 sub-packages "subPack-
age1" and "subPackage2". The first one contains the A class and the second one the B class.

2.13.2. Use of packages

TODO : example of use inside code (without the "using" primitive)

Reference

34

2.13.3. Syntaxic sugars

If you want, you can declare the same package in several files. You can also directly define subpackages in
the package naming directive of your file (see example 1 above). In the following example, we define a new
sub-package of "MyPackage" called "subPackage3" directly in the file. All features defined in this file will
belong to this sub-package.

Example 3: Defining subpackage using :: syntactic sugar

// file : subPackage3.kmt
package MyPackage::subPackage3;

class C
{
// ...
}

If a given file, when you want to use a class definition that is not in the scope of the current package inside
which you are working, you have to provide the full path of this class definition to be able to use it. However,
you can also define shortcuts to make your code clearer: the using primitive provides such a shortcut. Tak-
ing the previous example, it becomes:

// file : MyPackage-part2.kmt
package MyPackage;

require "MyPackage-part1.kmt"

using subPackage1 // <- "shortcut"!

class C inherits A
{
// ...
}

The using statement is a syntactical shorcut, it has no conterpart in Kermeta metamodel.

Note

The using statement is different from the definition of a local datatype with an alias. (See Local
datatype using "alias" subsection)

2.14. Collections

Collections are widely used in Kermeta not only because of their usual usage for collecting data in variables
but also because they are used to represent class property when the multiplicity is greater than 1.

Collections is one of the concept where the genericity is the most visible since it greatly helps to write more
robust code.

2.14.1. Definition and initialization

Kermeta defines some collection data types handling sets of values. The different available collection types

Reference

35

are the result of a combination of the constraints unique and ordered.

• Unique specifies a collection type that cannot contain doublet

• Ordered specifies a collection type where the position of an object inside the collection can be modified.

Name Description
Constraints

Unique Ordered

set Represents an unordered collection of objects
with no doublet (Set) True False

oset Represents an ordered collection of objects with
no doublet (OrderedSet) True True

seq Represents an ordered collection of objects
(Sequence) False True

bag Represents a basic collection of objects (Bag) False False

Figure 2.4. : The Kermeta collections

Another way to define set of objects would have been to use arrays. In fact, Kermeta does not define expli-
citly the concept of array, but it provides a multiplicity concept which can be used instead. Multiplicities are
a way to define a lower and upper bound on a collection. Syntactically, lower and upper bounds are defined
between brackets and are separated by two dots. Bounds can be an integer literal value or a star to specify
there's no upper bound.

Example 1: how to declare collections

Reference

36

using kermeta::standard // don't need to specify it all the time
// This is the simpliest and recommanded way of declaring a collection variable
var myColA : Set<Integer> // this is equivalent to saying set Integer[0..*]
var myColB : OrderedSet<Integer> // this is equivalent to saying oset Integer[0..*]

// Collection with multiplicities
var myCol1 : set Integer[4..6] // At least 4 elements and never more than 6

var myCol3 : seq String[2..*] // At least two strings in the sequence
var myCol4 : set String[1..*] // An non empty set
var myCol5 : String[1..*] // If you don't specify any keyword, it is an ordered set

There is currently no way to define a collection by extension like you can do in C or Java. You must initialize
your collection either by calling new (Kermeta constructor operation) on your collection type, or initialize by
copy.

Example 2: initialize collections

// Example of declaration of variables as Collections. All those syntaxes are valid
var myCol1 : set Integer[0..*] init kermeta::standard::Set<Integer>.new
// Fill in myCol1
myCol1.add(10)
myCol1.add(50)

var myCol2 : oset String[0..*] init kermeta::standard::OrderedSet<String>.new
var myCol3 : bag Boolean[0..*] init kermeta::standard::Bag<Boolean>.new
var myCol4 : seq Integer[0..*] init kermeta::standard::Sequence<Integer>.new
// if no keyword specified, and multiplicity is set, it is an OrderedSet

var myCol4 : String[0..*] init kermeta::standard::OrderedSet<String>.new

var myCol1a : seq Integer[0..*] init myCol1
var myCol2a : oset String[0..*] init myCol2
var myCol3a : kermeta::standard::Bag<Boolean> init myCol3
var myCol3a : kermeta::standard::Sequence<Integer> init myCol4

Note

Conclusion : in most cases, you don't need to use this special syntax, you can simply use the gen-
eric collection names (Set<Something>, OrderedSet<Something>, etc.) available in Kermeta frame-
work. Moreover, lower and upper bounds aren’t checked yet by Kermeta type checker and inter-
preter.

2.14.2. Some existing useful functions

The collections in Kermeta implement several functions based on lambda expressions (see Section 2.17,
“Lambda Expressions and functions”). These ones are very useful for model navigation.

2.14.2.1. Function each

Reference

37

TODO

aCollection.each { e |
/* do something with each element e of this collection */

}

2.14.2.2. Function forAll

TODO

aBoolean := aCollection.forAll { e | /* put here a condition */
} // return true if the condition is true for all elements in the collection.

2.14.2.3. Function select

TODO

aCollection2 := aCollection.select { e |
/* put here a condition that returns true for elements that must be included in the resulting Collection */

}

2.14.2.4. Function reject

TODO

aCollection2 := aCollection.reject { e |
/* put here a condition that returns true for elements that must be exclude in the resulting Collection */

}

2.14.2.5. Function collect

TODO

// return a new collection which size is the same as in the original
// collection, and which element type is the type of the result of the expression.

aCollection2 := aCollection.collect { e |
/* put here an expression, for example e.name */

}

2.14.2.6. Function detect

TODO

anObject := aCollection.detect { e | /* a condition */} // returns an element (usually the first) that fulfills the condition.

Reference

38

2.14.2.7. Function exists

Function exists returns true if at least one element fulfills the last boolean expression defined into the block.
For instance:

aBoolean := aCollection.exists { e | /* a condition */} // returns true if at least one element fulfills the condition.

If several boolean condition are defined into the block of function exists, the last condition is used for the
test. For instance, the following function exists returns true at the first iteration:

aBoolean := aCollection.exists { e | false true }

Instructions can be defined into the block of function exists. For instance, the following code displays the
current object at each iteration:

aBoolean := aCollection.exists { e |
stdio.writeln(e.toString)
/* a condition */

}

If no boolean expression is defined, value Void is returned, as illstrated in the following example. Such a use
of function exists is not adviced since it corresponds to the use of function each.

aBoolean := aCollection.exists { e | stdio.writeln(e.toString) }/* The value of aBoolean is Void */

2.15. Class properties

A property of a (meta)class can be expressed in three ways : as a reference, an attribute, or a derived prop-
erty. In Kermeta, each kind of these properties has a specific behavior and a dedicated syntax, which is at-
tribute (for attribute), reference (for reference), property (for derived property)

References and attributes can have opposite properties. This last concept is explained in the following sub-
section.

Unlike UML, there is no concept of visibility in Kermeta, so every property is visible

2.15.1. Attributes (attribute), references (reference)

We introduce here the 2 first cases, which are relationships between two concrete entities.

• attribute: an attribute defines a composition (e.g the black diamond) between two entities. The diamond-ed
association end is navigable by definition

class A { attribute x : set X[0..*] }
class X {}

Reference

39

Note

Composition notion also relates to containment notion. So, there are some restriction about valid
model. For example, in an association, only one end can be an attribute, otherwise this means that
we have an association with a diamond on both end and we cannot say who is the container of the
other.

• reference: a reference defines an association between two entities.

class A { reference x : set X[0..*] }
class X {}

2.15.2. properties modifiers

Attributes, references and properties underlying collections may eventually be specialized. By default, they
are represented by an OrderedSet. If you wish to be more precise and for exemple allow to have several items
with the same value in your collection, you can use the collection modifiers as defined in Section 2.14,
“Collections”

For example :

class A {
attribute x1 : seq String[0..*] // allows duplicates, ordered
attribute x2 : set String[0..*] // doesn't allow duplicates, not ordered
attribute x3 : bag String[0..*] // allows duplicates, not ordered
attribute x4 : oset String[0..*] // (default if no modifier) doesn't allow duplicates, ordered

}

2.15.3. Association using opposite properties

The opposite [property] of a property defines an association (bidirectional link) between two entities. An op-
posite is expressed by a sharp #. In the following example, a is the opposite property of the entity of type B,
and b is mutually the opposite property of the entity of type A.

Caution

A property whose type is a DataType (i.e String, Boolean, Integer) cannot have an opposite!

Example 1: definition of an attribute, a reference, and an opposite property

This means that a can be accessed from b. Subsequently, if you modify the property b of an instance of A, it
will mutually update its opposite property, i.e the property a of the instance of B contained in property b. You
can make a test with the following example of code.

Example 2: navigability of opposite properties

var a1 : A init A.new
a1.name := "a1"
var b1 : B init C.new
a1.b := b1

Reference

40

stdio.writeln("b1 opposite : " + b1.a.name) // This prints "a1"!

The following paragraph shows a set of examples of attributes and references.

Figure 2.5. Attributes and references

Example 3: a set of attributes and references, with multiplicities and opposites.

TODO : add an example of code using those classes !! See ht-
tps://gforge.inria.fr/plugins/scmcvs/cvsweb.php/integration_projects/other/org.openembedd.formations/Kerm
eta/Basics/docs/FR_formation_Kermeta_1er_niveau.odp?cvsroot=openembedd for such examples (p. 21).

package root;

class A1 {
attribute b : B1[0..*]

}
class B1 {}

class A2 {}
class B2 {

reference a : A2
}

class A3 {
reference b : B3#a

}
class B3 {

reference a : A3#b
}

class A4 {
reference a : A4[0..*]

Reference

41

}

class A5 {
attribute ab : A5[0..*]#aa
reference aa : A5#ab

}

class A6 {
attribute b : B6#a

}
class B6 {

reference a : A6[1..1]#b
}

class A7 {
attribute b : B7[0..*]#a

}
class B7 {

reference a : A7#b
}

class A8 {
attribute b : B8[1..1]#a

}
class B8 {

reference a : A8#b
}

class A9 {}
class B9 {

reference a : A9[1..1]
}

Note

For every case where the upper bound of a property is upper to 1, the type of the property is
OrderedSet . The reader will refer to Section 2.14, “Collections” (except the bag type) to have the
available types for a [m..n](n>1) multiplicity property.

2.15.4. Derived properties (property)

In a class definition, a derived property is a property that is derived or calculated, i.e it contains a body, like
operations. Usually, such properties are calculated from other properties available from its owning class
definition. In practice, you can define the code that you want inside a derived property.

In other words it does not reference to a concrete entity: it is calculated, through the accessor operations get-
ter and setter.

The special parameter value is used in the setter to get the value passed when calling the setter.

Let's take the following class definitions :

Reference

42

// readonly property : it has no setter
class A
{

attribute period : Real
property readonly frequency : Real // property : keyword for derived property

getter is do
result := 1/period

end
}
// modifiable property :
class B
{

attribute period : Real
property frequency : Real

getter is do
result result := 1/period

end
setter is do

period := 1/value
end

}

// a typical use would be (with aB an instance of class B)
var freq : Real
fred := aB.frequency // to use the getter
aB.frequency := freq + 1 // to use the setter, the period is also updated in the process

Note

To understand to role of the value keyword, you can imagine that in this sample the setter syntax
is a shortcut syntax of : setter(value : Real) is do ... (even if actually this syntax isn't
supported).

Warning

Since derived properties aims to behave like attributes or references, if the multiplicity is greater
than 1, it doesn't make sense to define a setter. This is because it means reassigning the internal
collection which is in fact calculated.

Properties are accessed or modified as classical properties. See next subsection for examples.

2.15.5. How to access and control the properties in Kermeta

Example 1: let's take the example with A6 and B6 :

class A6 {
attribute b : B6[0..*]#a

}

class B6 {
reference a : A6#b

}

Access Kermeta expression

Get the attribute of an var a6 : A6 init A6.new
var b6 : OrderedSet<B6>

Reference

43

Access Kermeta expression

instance
// get the b attribute
// Note that as the attribute as a multiplicity >1 it is an OrderedSet
b6 := a6.b

Add an element to a
property with multipli-
city [m..n], n>1

var a6 : A6 init A6.new
var b6 : B6 init B6.new
// add b6 to the attribute b of A.
// Note : you don’t have to initialize b! done through A6.new
a6.b.add(b6)

Remove an element
from a property

// OrderedSet owns a method that removes an element given its
// index in the set. For unordered sets, use "remove" method

a6.b.removeAt(0)
// Also valid : a6.b.remove(b6)

Get the opposite of a
property

var a6 : A6 init A6.new
var b6 : B6 init B6.new
a6.b.add(b6)
// this assertion is true. Moreover, any instance in a6.b will
// have a6 as their opposite since b is a collection
assert(b6.a == a6)

Get the container of a
property

var a6 : A6 init A6.new
var b6 : B6 init B6.new
// add ab6 to the attribute "b"
a6.b.add(b6)

var a6c : A6 init b6.container()
// this assertion is true
assert(a6c.equals(a6))

It is not different with references that have a [m..1] (m=0 or m=1) multiplicity:

Example 2: the A5 B5 case

class A5 {
attribute b : B5#a // no multiplicity means [0..1]

}
class B5 {

reference a : A5[1..1]#b
}

Access Kermeta expression

Get the attribute of an
instance

var a5 : A5 init A5.new
var b5 : B5
// get the b attribute
b5 := a5.b

Reference

44

Access Kermeta expression

Set a property (with
multiplicity [m..1], m#1)

var a5 : A5 init A5.new
var b5 : B5 init B5.new
// set b5 to the attribute b of A.
a5.b := b5

Unset a property a5.b := void

Get the opposite of a
property

var a5 : A5 init A5.new
var b5 : B5 init B5.new
a5.b := b5
// this assertion is true.
assert(b5.a == a5)

Get the container of a
property

var a5 : A5 init A5.new
var b5 : B5 init B5.new
// add b5 to the attribute "b"
a5.b := b5

var a5c : A5 init b5.container()
// this assertion is true
assert(a5c.equals(a5))

Note

Be careful with attributes or references ref with multiplicity greater than 1, they are automatically ini-
tialized with a reflective collection (ie. a collection that is aware of an eventual opposite). So, you
cannot assign them using := If you wish to change completely its content with the one of another
collection, you must use the clear and addAll operations.

Note

For the same reason,reference refA : OrderedSet<String> is different from reference
refB : String[0..*]. If both can be navigated the same way (using add, each or any opera-
tion available on Collection), refA needs to be created before use with refA := Ordered-
Set<String>.new. refA is a reference to a colection whereas refB is a reference to String with
a multiplicity greater than 1 (which is internally represented as a ReflectiveCollection<String>)

2.15.6. Assignment behavior for attribute (and reference)

Attribute and reference have one main behavior difference.

Attribute has a notion of containment that reference hasn't.

This has some implication on the behavior of the assignment because an attribute cannot be owned by more
than one object at a time.

Reference

45

There is an exception for attributes which type is a primitive type (String, Integer, Boolean, Real, Char) :
since those types inherit from ValueType, they are not concerned by the composition, opposite concepts. In
this case, the assignment doesn't impact any value but the assigned one.

Example 1: Assignment behavior for attribute

class A { attribute c1 : C }
class B { attribute c2 : C }
class C { }
aA.c1 := C.new
aB.c2 := aA.c1 // now aA.c1 == void !!!

Example 2: Assignment behavior for reference

class A { reference c1 : C }
class B { reference c2 : C }
class C { }

aA.c1 := C.new
aB.c2 := aA.c1 // aB.c2 == aA.c1 and aA.c1 keeps its value !!!

Example 3: Assignment behavior for attribute which type is String

class A { reference c1 : String }class B { reference c2 : String }aA.c1 := "Robert"aB.c2 := aA.c1 // aB.c2 == aA.c1 == "Robert"

Note

The assignment into a variable or a reference is not a problem because it doesn't change the
owner of the assigned object.

2.16. Objects comparison

Kermeta users could be confused about == operator and equals method. Unlike, Java they do the same and
redefining the equals to compare the content also affects the ==.

To compare the identity of two objects you must compare the identifier of each object : using their oid

2.16.1. equals method

The equals method behaves the same way as in java. This means that you can overwrite it, if you want to
compare the contents of two objects of the same class.

@mainClass "root::Main"
@mainOperation "main"

package root;

require kermeta
using kermeta::standard
using kermeta::kunit
class A {

Reference

46

reference x : Integer

method equals(compared : Object) : Boolean is do
var castedCompared : A
castedCompared ?= compared
result := x.equals (castedCompared.x)

end

}

class Main inherits kermeta::kunit::TestCase{

operation main() : Void is do

var a1 : A init A.new
var a2 : A init A.new

a1.x := 10
a2.x := 20

assert(not a1.equals(a2)) // objects are different with all methods
assert(not a1 == a2)
assert (a1.oid == a2.oid)

a2.x := 10

assert (a1.equals(a2)) // objects becomes equals
assert (a1 == a2) // also with ==
assert (a1.oid == a2.oid) // but they physically are still different

end

}

2.16.2. Comparison for Primitive Types

In Kermeta language, there is a notion of primitive type. Here is the list of primitive types :

• Boolean

• Integer

• String

• Character

• Real

We do not want two Integer objects with the same value to be different. What we want is to use == operator
to compare values of primitive types. These classes simply redefine the equals. Then we can write this code :

var i1 : Integer init 10
var i2 : Integer init 10
assert (i1.equals(i2))

var i3 : Integer init 10
var i4 : Integer init 10
assert (i3 == i4)

Reference

47

2.16.3. Collection comparison

The method equals exists for the collections. The generic behavior is the following : for two collections a
and b, if all elements of a are contained in b and vice-versa, then it returns true, false otherwise. This behavi-
or is little bit different for ordered collection which takes into account the order of elements. Have a look to
the following pieces of code :

operation test_try1() : Void is do
var os : OrderedSet<Integer> init OrderedSet<Integer>.new
os.add(1) os.add(2) os.add(3) os.add(4) os.add(5) os.add(6)

var os2 : OrderedSet<Integer> init OrderedSet<Integer>.new
os2.add(1) os2.add(2) os2.add(3) os2.add(4) os2.add(5) os2.add(6)

assert (os.equals(os2))
end

operation test_try2() : Void is do
var os : OrderedSet<Integer> init OrderedSet<Integer>.new
os.add(1) os.add(2) os.add(3) os.add(4) os.add(5) os.add(6)

var os2 : OrderedSet<Integer> init OrderedSet<Integer>.new
os2.add(1) os2.add(2) os2.add(3) os2.add(4) os2.add(5)

assert (not os.equals(os2))
end

/**
* An ordered set takes care about the order.
*/
operation test_try3() : Void is do

var os : OrderedSet<Integer> init OrderedSet<Integer>.new
os.add(1) os.add(2) os.add(3) os.add(4) os.add(5) os.add(6)

var os2 : OrderedSet<Integer> init OrderedSet<Integer>.new
os2.add(4) os2.add(6) os2.add(3) os2.add(1) os2.add(5) os2.add(2)

assert (not os.equals(os2))
end

/**
* A set does not care about the order.
*/
operation test_try4() : Void is do

var os : Set<Integer> init Set<Integer>.new
os.add(1) os.add(2) os.add(3) os.add(4) os.add(5) os.add(6)

var os2 : Set<Integer> init Set<Integer>.new
os2.add(4) os2.add(6) os2.add(3) os2.add(1) os2.add(5) os2.add(2)

assert (os.equals(os2))
end

2.17. Lambda Expressions and functions

Kermeta proposes an implementation of lambda expressions, that is mainly useful for implementing OCL-
like functions.

Note

Reference

48

Limitations of lambda expressions usage:An operation with a function as parameter : if you define
an operation which has a function as a parameter (ex: operation op(func :
<Integer->Object>)), then you cannot put more parameters : only one parameter is allowed in
such a case.

2.17.1. Syntax

Here is a definition of function syntax (this is not a formal representation)

• Signature of an operation defined as a function:

// With one parameter
operation FUNCTION_NAME (LAMBDA_NAME : <TYPE->RETURN_TYPE>)
// With many parameters
operation FUNCTION_NAME (LAMBDA_NAME : <[TYPE_1, TYPE_2, ...]->RETURN_TYPE>)

• Call of a function:

anInstance.FUNCTION_NAME (TYPE | SOME_CODE)
anInstance.FUNCTION_NAME (TYPE_1, TYPE_2 | SOME_CODE)

• Declaring and defining an "anonymous" function inside an operation body

var f : <TYPE -> RETURN_TYPE>
f := function { VAR_NAME : TYPE | SOME_CODE_WITH_RETURN_TYPE_RESULT }

var f : <[TYPE_1, TYPE_2,...] -> RETURN_TYPE>
f := function { VAR_NAME_1 : TYPE_1, VAR_NAME_2 : TYPE_2,... | SOME_CODE_WITH_RETURN_TYPE_RESULT }

In the following sections, you will find many examples of declarations, definitions, and uses of functions.

2.17.2. Some existing useful functions

The collections in Kermeta implement several functions based on lambda expression. These ones are very
useful for model navigation.

Example 1: closure definition for collection iterator-like in Kermeta

aCollection.each { e |
/* do something with each element e of this collection */

}

See Section 2.14, “Collections” for other existing functions on collections.

Example 2: another useful function that is defined on Integer : the function times

10.times { i | stdio.writeln(i.toString) } // prints 0 to 9

Notice that you can also write some complex code in the function, using internal variables, etc. In such a

Reference

49

case, the last statement evaluation will be the returned result of the lambda expression (provided it is declared
to return something)

Example 3: complex code in a lambda expression

aCollection.each { e |
stdio.writeln("I am complex code!"
stdio.writeln("Element : " + e.toString)
var i : Integer init 5
i := i + 132458

}

Example 4: postponing parameter evaluation in the andThen operation

The operation andThen and orElse of Boolean use the ability of functions to postpone the parameter evalu-
ation. This allows to implement the expected behavior without adding new construct to the language.

// this kind of code allows to avoid a cast exception on the second test
if cl.isInstanceOf(NamedElement).andThen{f| cl.asType(NamedElement).name == "foo"} then

// do something...
end

Note

The parameter f is not used in this function. This is due to the current surface syntax of Kermeta
which need at least one parameter. In this case, it's value is void.

2.17.3. Defining new functions in a class

You can also define your own functions, by declaring an operation, with a parameter as a function using the
syntax described in Section 2.17.1, “Syntax”.

Example: definition of functions for collections

abstract class Collection<G>
{

/** * runs func on each element of the collection */
operation each(func : <G -> Object>) : Void is do

from var it : Iterator<G> init iterator
until it.isOff
loop

func(it.next)
end

end

/** * checks that the condition is true on all the element of the collection * returns true if the collection is empty */
operation forAll(func : <G -> Boolean>) : Boolean is do

var test : Boolean init true
from var it : Iterator<G> init iterator
until it.isOff
loop

test := test and func(it.next)
end
result := test

end
}

Reference

50

2.17.4. Defining lambda expression variables

You can also define lambda expression as variable. This can be useful if you don't want to (or can't) modify
the class.

• A basic lambda expression

With one Integer argument and returning an Integer.

var aLambdaExp : <Integer->Integer>
var aLambdaResult : Integer
aLambdaExp := function { i : Integer | i.plus(4) }
// aLambdaResult equals 7
aLambdaResult := aLambdaExp(3)

• A lambda expression with several parameters

var aLambdaExp : <[Integer, Integer]->Integer>
var aLambdaResult : Integer
aLambdaExp := function { i : Integer, j : Integer | i * j }
// aLambdaResult equals 12
aLambdaResult := aLambdaExp(3, 4)

• A lambda expression on a collection

var sequence : Sequence<Integer> init Sequence
var init_set : Set<Integer> init Set<Integer>.new
init_set.add(32)
init_set.add(23)
init_set.add(41)

// This sequence equals : [320, 230, 41]
sequence := init_set.collect { element | element*10}

The code within the function can be as complex as you want, using internal variables, etc.

var factoExp : <Integer->Integer>
factoExp := function { n : Integer |

var fact : Integer init 1
from var x : Integer init 1
until x > n
loop

fact := fact * x
x:=x+1

end
fact // return fact as the result of the function
//shorter alternative ;-)... if n<=1 then 1 else factoExp(n -1) * n end

}
var cnkExp : <[Integer, Integer]->Integer>
cnkExp := function { n : Integer, k : Integer |

factoExp(n) / (factoExp(k) * factoExp(n-k))
}

Reference

51

2.18. Dynamic evaluation of Kermeta expressions

Kermeta allow you to evaluate dynamically a Kermeta Expression with a specific context.

Example 1: my first dynamic expression

var de : DynamicExpression init DynamicExpression.new
de.initializeDefaults
de.formalParameters.put("a", String)
de.parse("stdio.writeln(a)")
var params : Hashtable<String, Object> init Hashtable<String, Object>.new
params.put("a", "hello world!")
de.execute(void, params)

If you want to dynamically evaluate more than one statement, you will have to surround your set of state-
ments with "do.. end" block:

Example 2: yet another example

// let's get previous example and modify it // [...] (carriage return is not necessary inside the block)
de.parse("do stdio.writeln(a) stdio.writeln("another stdio writeln ... ") end")
// [...]

Example 3: another more complex sample of dynamic expressions :

package testDynamicExpression;

using kermeta::interpreter
using kermeta::utils
using kermeta::standard

class TestMain
{

operation TestToto() is do
stdio.writeln("J'ai essayé de lancer testtoto!")

end

operation testDynExp() is do
var dynExpr : DynamicExpression init DynamicExpression.new
dynExpr.initializeDefaults()

self.getMetaClass.ownedOperation.select{op| not(op.name.indexOf("Test")==-1)
and op.name.indexOf("All")==-1}

.collect{op|op.name}.each{opName|

stdio.writeln("execution de "+opName)
dynExpr.initializeDefaults
dynExpr.parse("testDynamicExpression ::TestMain.new." +opName)
dynExpr.execute(void,Hashtable<String,Object>.new)

}
end

}

Caution

Reference

52

You cannot use "self" inside a dynamic expression

2.19. Design by contract (pre, post, inv contraints)

In Kermeta, a contract is specified by "pre" and "post" conditions and by the "invariant" constraint too.

2.19.1. Writing a contract

2.19.1.1. pre – post conditions syntax

A pre or a post condition is a boolean expression that may be a simple equality checking or a lambda expres-
sion. The Kermeta interpreter evaluates the body content like a boolean result

The "pre condition" are declared just before the "is" of the operation body

operation opName(c : String) : String

// Declaration of the pre-condition
pre notVoidInput is do

c != void and c != ""
end

// Declaration of the post-condition
post notVoidOutput is

result != void and result != ""

is
do

// operation body
end

Tip

If the body contains only one expression, the block declaration "do ... end" is not mandatory. If your
block contains several instructions, the latest one will be evaluated as a boolean expression.

2.19.1.2. Invariant constraint syntax

An invariant constraint is declared anywhere in a ClassDefinition block.

An invariant declaration is a boolean expression that may be a simple equality checking or a lambda expres-
sion. The Kermeta interpreter evaluates the body content like a boolean result.

A very simple example :

class className {

...

// Declaration of the invariant : deterministicTransition
inv nameOfTheInvariant is do

Reference

53

self.name != ""
end

...
}

Tip

If the body contains only one instruction, the block declaration "do ... end" is not mandatory.

// Declaration of the invariant : deterministicTransition
inv nameOfTheInvariant is self.name != ""

A lambda expression can be used into an invariant declaration:

// Declaration of the invariant : deterministicTransition
inv deterministicTransition is do

self.outgoingTransition.forAll{tr1 |
self.outgoingTransition.forAll{ tr2 |

(tr2.input==tr1.input) == (tr1==tr2)
}

}
end

2.19.2. Checking your constraints

2.19.2.1. Checking pre – post condition

The activation of the checking of the pre - post conditions depends of the run configuration, see the Kermeta
UI user guide for more information.

If the boolean statement is evaluated to "false" then the pre or post condition is violated and an exception
ConstraintViolatedPre or ConstraintViolatedPost is raised.

2.19.2.2. Checking invariant

In order to check the well-formedness rules of a model element, there are two methods in Kermeta. The first-
one : checkInvariants, consists to check only the current model element and the second-one : check-
AllInvariants, checks recursively the element being a containment link with the checked element.

theModelElement.checkInvariants

The checkAllInvariants operation is a recursive method which checks all the elements having a containment
relation by transitivity with the checked element.

checkAllInvariants is used especially to check the validity of a model fragment or a complete model.

theModelElement.checkAllInvariants

Reference

54

If the boolean statement is evaluated to "false" then the invariant constraint is violated and an exception
ConstraintViolatedInv is raised. This exception can be handled by a rescue call.

// Call the invariant verification
do

theModelElement.checkInvariants
rescue (err : ConstraintViolatedInv)

stdio.writeln(err.toString)
stdio.write(err.message)

end

2.20. Weaving Kermeta code

Since version 0.4.1, it is possible to write Kermeta code using a simplified Aspect Oriented approach.

Technically, you can declare classes as "aspects" that will contribute features (attributes, references, proper-
ties, operations, constraints) to an existing classes. In such situation, the definition of two classes that have
the same qualified name will be merged into a single class in the interpreter memory.

This is a great help when you want to separate the concerns into several files. For example, you may have
one file the strictly conforms to the structural part of your metamodel, one file containing the constraints for a
given purpose and another file containing the operation and special extension to the metamodel for an inter-
preter.

Obviously, the merge will be successful only if there is no conflict between all the declared features.

2.20.1. Textual syntax for merging

The merge is driven by the qualified name of the element to merge. Two classes will be merged if they have
exactly the same qualified name (packages names + class name)

In order to keep the compatibility with previous behaviour, the merge is allowed only if you add some
keyword or tag:

aspect This keyword is placed on a class, it indicates that this class is an aspect of
another one. This allows to complement a class with the features of the as-
pect class.

@overloadable "true" This tag is placed on an operation, it indicates that the body of the operation
can be overloaded by another definition of the same operation in an aspect
class. This is useful in some situation were the code expect to be overloaded.

Note

When using overloadable tag, for a given set of definition, the operation that is not tagged overlod-
able will overload all other definitions. If all the declaration declare to be overloadable, then the de-
claration order is important. The last declared will be used by the interpreter.

Note

Reference

55

Since version 1.0.0, there is a dedicated keyword aspect, with previous version this feature was
possible using the tag @aspect "true" on classes.

2.20.2. Example 1: Simple Class merge

In this sample, writing:

// aspect1.kmt
package pack;
require kermeta
// this is the first aspect of class A
aspect class A {

attribute decorations : Decoration[0..*]
}
// this aspect also declares a new class, visible only when requiring this aspect
class Decoration{

attribute val : kermeta::standard::String
}

// base.kmt
package pack;
require kermeta
// this is the base class
class A {

attribute name : kermeta::standard::String

// operation in this context have access only to the base's features
operation getName() : kermeta::standard::String is do

result := name
end

}

// aspect2.kmt
package pack;
require kermeta
require "base.kmt"
require "aspect1.kmt"

// is this context we have access to all the features of class A : from base, aspect1 and aspect2
aspect class A {

attribute id : kermeta::standard::Integer
operation getFullSpecification() : kermeta::standard::String is do

result := name
result := "(" + id.toString + ")"
decorations.each{ decoration | result := result + "<" + decoration.val+ ">" }

end
}

Note

Please note that the visibility of the features is respected. In base.kmt, class A doesn't know about
attributes id or decorators.

Tip

In the previous example we aspectize a *.kmt, we could choose to aspectize the corresponding

Reference

56

*.ecore file.

In fact, the both formats are available: *.kmt or *.ecore.

from the point of view of aspect2.kmt (ie. any file that requires aspect2.kmt) is equivalent to write :

class A {
attribute name : kermeta::standard::String
attribute decorations : Decoration[0..*]
attribute id : kermeta::standard::Integer

// operation in this context have access only to the base's features
operation getName() : kermeta::standard::String is do

result := name
end
operation getFullSpecification() : kermeta::standard::String is do

result := name
result := "(" + id.toString + ")"
decorations.each{ decoration | result := result + "<" + decoration.val+ ">" }

end
}
class Decoration{

attribute val : kermeta::standard::String
}

Note

When there is no conflict like in this sample, the order used to declare the features doesn't changes
the final behavior of the code.

2.20.3. Example 2: merge with feature redefinition

This sample shows that if the signature are strictly equivalent, then you can redefine the same structural fea-
ture (attribute, reference) in several aspect class.

In addition, if an operation is declared abstract, it can be an aspect of another one which is concrete. This is
useful in order to add pre or post conditions to a given operation.

Currently, (v1.0.0) the derived properties cannot be redefined in several aspect classes.

aspect class A {
//the feature is equivalent to the one define in the base class, so this is legal
attribute name : kermeta::standard::String

// the operation has the same signature and is abstract, so this is legal
operation getQualifiedName() : kermeta::standard::String

post notVoid is not result == Void
is abstract

}

package pack;
require kermeta
class A {

attribute name : kermeta::standard::String
operation getQualifiedName() : kermeta::standard::String is do

result := name
end

}

Reference

57

2.20.4. Example 3: merge with operation overload

This sample shows the use of the overloadable tag

package pack;
require kermeta
aspect class A {

@overloadable "true"
operation getQualifiedName() : kermeta::standard::String

post notVoid is not result == Void
is abstract

}

package pack;
require kermeta
aspect class A {

@overloadable "true"
operation getQualifiedName() : kermeta::standard::String is do

raise kermeta::exceptions::NotImplementedException.new
end

}

class A {
attribute name : kermeta::standard::String
operation getQualifiedName() : kermeta::standard::String is do

result := name
end

}

In this sample, the first declaration of the operation is adds a post condition to the operation. As it is abstract,
it isn't in conflict with the other declarations.

The second declaration, has a body. It implements a kind of default behavior for the operation that will be
used if no other body is declared for this operation. this is useful when converting ecore models into Kermeta
for example.

The last definition is the one that will be used in this context.

2.20.5. Aspect and inheritance

If you define some inheritance in one of your aspects, all the aspects that require this aspect will have access
to it. You don't need to redefine it. However, if it helps to clarify the code to write it again, it will behave the
same way.

2.20.6. Aspect and abstract

In Kermeta textual syntax, the keyword aspect must be placed before the keyword abstract.

Example :

package pack;
require kermeta
aspect abstract class A {

// add something

Reference

58

}

2.20.7. Aspect without common base

A special case of the use of AOP in Kermeta is having a ClassDefinition A defined in 2 separately modeling
units (*.kmt) with the keyword aspect. But the two modeling units does not require another kmt or ecore file
containing the base definition of A. Now if there is a new Modeling Unit that requires the two previous one
the available definition of A is the composition of the 2 defined aspects.

2.21. Model type

Warning

In current version of Kermeta(v1.1.0), ModelType is still a prototype. Any help, feedback, contribu-
tion is welcome to help us to finalize it.

Kermeta is clearly a model oriented language, one of its first concept is a model element, because they are the
manipulated objects. However, we often need to organise them and manipulate them as a set : a model. A
common way to do that is to simply use a set, and a resource (used for load and save) is just a set. This ap-
proach is not type safe enough.

So, Kermeta implements a clear notion of model type, in order to be able to typecheck this kind of model. A
model type is simply the set of the type of all allowed model elements.

In addition, it introduce a mechanism of conformance between modeltype that helps to reuse code from one
metamodel to another.

2.21.1. Definition of a model type

A model type is simply a set of metaclasses. Expressed in Kermeta, this is a collection of Kermeta classes.

package aMetamodel;
// let's define some normal classes
class C1 {

attribute name : String
attribute aC2 : C2#aC1

}
class C2 {

reference aC1 : C1#aC2
}

// then defining a modeltype is just listing the classes of this modeltype
// here, the model type is composed of two metaclasses, C1 and C2
modeltype MainMT { aMetamodel::C1, aMetamodel::C2}

Tip

You can use all classic way to define classes, in kmt, but you can also require an ecore file that will

Reference

59

contain your class definition (see require section ???)

2.21.2. Using Model types variables

Now that you have defined a ModelType, you can use it to declare model variables.

var aMainMT : MainMT init MainMT.new

But, your model is still empty. As its contents is a (constrained) Set you simply have to fill it with your mod-
el element using typechecked operations like add, or using filtered operation like addCompatible and
addAllCompatible (with this one you can pass any collection, only compatible objects will be added to
the model).

// create a model element
var newC1 : aMetamodel::C1 init aMetamodel::C1.new()
newC1.name := "hello"
// then add it to the model
aMainMT.add(newC1)

2.21.3. Model type serialisation

As a model type is based on "normal" class definitions, loading and saving models mostly relies on the nor-
mal way to load resource (see Section 2.12, “Loading and saving models”)

A simple approach for loading is to load with the classical approach, then to use the operations ad-
dAllCompatible with the content of the resource or resourceToModel with the resource. That will
fill the model with compatible objects.

// load a resource with model elements
var res : EMFRepository init EMFRepository.new
var resource : Resource init res.createResource(modelFileName, ecoreMetamodelFileName)
resource.load()

// then add them to the model
aMainMT.addAllCompatible(resource.contents)
// alternative
// aMainMT.resourceToModel(resource)

TODO sample of saving (how to put root objects of the model into a resource)

2.21.4. Model type conformance

TODO explain how Modeltype helps to reuse existing code from a metamodel to another

Model types use a notion of conformance that allows to determine if a metamodel is conformant to another.
The goal is to be able to write code that will be valid not only for models of a given metamodel, but will be

Reference

60

valid for models of conformant metamodels.

In order to be flexible, the conformity between metamodel is based on the properties offered by the meta-
classes. It ignores the name of the metaclasses.

As a sample, let's define a mini metamodel and its corresponding model type :

Note

We could also define a modeltype directly on top of the previous metamodel (and restrain it to some
of its metaclasses), but the sample would have been less general and wouldn't have illustrated the
fact that the name of metaclasses are ignored.

modeltype MiniMT_2 { aMetamodel::C1 }

Warning

The current implementation works only when there is no ambiguity, if there is ambiguity between
two metamodels, then they are considered as not conformant. A future version, may eventually in-
troduce a binding mechanism that would allows to remove those ambiguity. (See Jim Steel Phd
thesis for more details ???)

2.21.5. Using Model types in generic classes/operations

TODO

2.21.6. A more complex example of conformance : FSM vari-
ants

TODO reuse JM slides and the conformity table

2.22. Using existing java code in Kermeta

If you have existing code that you want to run in a Kermeta program, you can use one of those two mechan-
isms : extern call or seamless require.

The extern call is currently the more robust approach as it is used internally by Kermeta to implement some
part of its framework. It also helps to clearly specify the border between java and Kermeta.

The seamless java require is more straitghforward to use (no wrapper to write) but is still in prototype
(v0.4.2) and still have several limitations.

Reference

61

2.22.1. Using extern to call java code

The extern allows you to call a java static method from Kermeta. But, to do that, you will have firstly to cre-
ate a Java wrapper, that will be able to manipulate correctly the Java objects, and secondly to add this wrap-
per in your java global classpath.

Then, from this method you can access all your java libraries. One task of the static method will be to convert
the basic types like Integer or String.

You'll need to refer to the Javadoc of the interpreter in order to know how to access the internal RuntimeOb-
ject of Kermeta.

Example 1: sample of Kermeta code using extern (io.kmt):

/** * An implementation of a StdIO class in Kermeta using existing Java: standard * input/output */
class StdIO
{
/** * write the object to standard output */
operation write(object : Object) : Void is do
result ?= extern fr::irisa::triskell::kermeta::runtime::basetypes::StdIO.write(object)

end

/** * writeln the object to standard output */
operation writeln(object : Object) : Void is do
result ?= extern fr::irisa::triskell::kermeta::runtime::basetypes::StdIO.writeln(object)

end

/** * read an object from standard input */
operation read(prompt : String) : String is do
result ?= extern fr::irisa::triskell::kermeta::runtime::basetypes::StdIO.read(prompt)

end

}

Example 2: sample of Java code ("wrapper") called by the Kermeta extern:

/** Implementation of input and output methods */
public class StdIO{

// Implementation of method write called as :
// extern fr::irisa::triskell::kermeta::runtime::basetypes::Io.write(output)
public static RuntimeObject write(RuntimeObject output) {

output.getFactory().getKermetaIOStream().print(output.getData().get("StringValue"));
return output.getFactory().getMemory().voidINSTANCE;
}
// Implementation of method writeln called as : // extern fr::irisa::triskell::kermeta::runtime::basetypes::Io.writeln(output)
public static RuntimeObject writeln(RuntimeObject output) {

write(output);
output.getFactory().getKermetaIOStream().print("\n");

return output.getFactory().getMemory().voidINSTANCE;
}
// Implementation of method writeln called as : // extern fr::irisa::triskell::kermeta::runtime::basetypes::Io.read(output)
public static RuntimeObject read(RuntimeObject prompt) {

java.lang.String input = null;
// We also have our own String wrapper

if (String.getValue(prompt).length()>0)
prompt.getFactory().getKermetaIOStream().print(String.getValue(prompt));

// FIXME : dirty cast.. read returns a String or could return smthg else?
input = (java.lang.String)prompt.getFactory().getKermetaIOStream().read(String.getValue(prompt));
RuntimeObject result = String.create(input, prompt.getFactory());
return result;

}

Tip

Reference

62

This method is used to implement Kermeta framework. You'll find much more code samples of ex-
tern call in its sources.

2.22.2. Requiring jar file to call java code

Warning

This feature is still a prototype and still have many limitations. The first version is already available
but any help is welcome to help us to improve it.

The basic principle, is to simply require your jar file.

require "yourjar.jar"

Then Kermeta automatically retreive the class definition it contains to be used from Kermeta code. However,
as java and Kermeta have different language constraints, some adaptation are automatically made.

If there is several operations with the same name (as this is legal in Java but not in Kermeta) they are re-
named. (Please use the outline to find the new name of the operation you want)

Java contructors are generated as "initialize" operation.

When creating a new java object from Kermeta, a call to new is not enough, you also need to call one of the
"initialize" operation in order to correctly create it.

In order to get the standard library direclty from your running java, you can require java_rt_jar but
as this library is really big and as you probably don't need all java from Kermeta ;-) then you must use the in-
cludeFilter and excludeFilter.

Sample using java.io from java Standard library

require kermeta

require java_rt_jar includeFilter ("java::io") // the filter ensure we don't get all java

using java::io
using kermeta::kunit
class testRequireJava inherits kermeta::kunit::TestCase
{

operation main() : Void is do
var tr : TestRunner init TestRunner.new
tr.run(testRequireJava)
tr.printTestResult

end

operation testmain() : Void is do

// create and initialize a File with the String
var f : File init File.new.initialize_String("c:/temp/test.txt")
var f2 : File
// create and initialize a FileWriter with the File
var fwriter : FileWriter init FileWriter.new.initialize_File(f)
if (f.exists) then

stdio.writeln(f.toString + " already exists")
else

stdio.writeln(f.createNewFile.toString)
end

Reference

63

fwriter.write_String("Hello world")
fwriter.close
stdio.writeln("file written")
stdio.writeln(fwriter.toString)

stdio.writeln(f.getPath)
stdio.writeln(f.separator)
f2 := f
stdio.writeln(f2.createNewFile.toString)
stdio.writeln((f2.equals(f)).toString)
assert(f2.equals(f))

var fwriter2 : FileWriter
fwriter2 := fwriter
stdio.writeln((fwriter2.equals(fwriter)).toString)
assert(fwriter2.equals(fwriter))

stdio.writeln(f.getPath)
stdio.writeln(f.toString)
stdio.writeln("End")

end
}

includeFilter and excludeFilter accept a comma separated list of qualified name. include-
Filter adds only elements whose qualified name start with one of the list. excludeFilter removes ele-
ments whose qualified name start with one of the list. If you use a combinaison of includeFilter and
excludeFilter, then the includeFilter is applied before the excludeFilter (that'll remove ele-
ment from the included one.

Currently known limitations: no support for java5 generics (they are ignored), requiring very big jar like the
full java library end up with out of memory error (you need to use the includefilter and excludeFilter), some
bugs with some primitives types (double/float)

2.23. Cloning objects

As we saw in previous sections, class properties can be defined as attribute or reference. An attribute cannot
be shared between two or more objects whereas a reference can be. Let's consider a class "Family" with a
property "father" (of type "Person") defined as an attribute. In the following example, we defined two
objects of type Family and we want to define the father attribute of the second with the father of the
first. To do that, we need to clone the object Person which represents the father of "family1" because, as
said in Section 2.15.6, “Assignment behavior for attribute (and reference)”, it could not be shared between
the two objects, by definition of attribute (in "technical" words, an object cannot be contained by 2 contain-
ers).

class Person
{

attribute name : String
}

class Family
{

attribute father : Person
}

class Main
{

operation run() is
do var family1 : Family init Family.new

Reference

64

var p1 : Person init Person.new
p1.name := "Robert"
family1.father := p1

var family2 : Family init Family.new

// ERROR 1 : this assigns p1 to family2.father, which
// is already owned by family1.father, so it unsets family1.father
// family2.father := p1

// ERROR 2 : this assigns family1.father's value to family2.father,
// so it unsets family1.father
// family2.father := family1.father

// This is correct! family2.father keeps its value
family2.father := Person.clone(p1)

end
}

The "clone" method creates a copy of the object that it receives as input. If it is a complex object, a deep
clone is performed for each attribute of its meta-class and a shallow clone is performed for each reference.

Caution

Reminder : be very careful with the use of the assignment operator on object. Most of the time, you
need to use the "clone" feature. Using assignment on attributes break the previous link between ob-
jects. So, In the previous example, p1 has no more name after the assignment !There is one excep-
tion to this behavior : when the type of attributes are DataType, i.e, in Kermeta, String, Integer,
Boolean, the assignment behaves as if those entities were defined as references.

Reference

65

CHAPTER 3

Kermeta Metamodel

As Kermeta is designed to be used in a model driven environment, its structure is given as a model. This sec-
tion presents the metamodel of Kermeta which corresponds to the abstract syntax of Kermeta.

This metamodel may be useful for many use cases. For example, you can use it to manipulate your Kermeta
code for analysis or even generate some Kermeta code. This may be useful to understand how Kermeta
works too.

Note

All the code samples in this section are for illustration of the given concepts.

The goal of the Kermeta language is to provide an action language for MOF models. The idea is to start from
MOF, which provides the structure of the language, and to add an action model. Using the MOF to define the
structure of the Kermeta language has an important impact on the language. In fact, as MOF concepts are Ob-
ject-Oriented concepts, Kermeta includes most of the classical Object-Oriented mechanisms. Yet, MOF only
defines structures, and the operational semantic corresponding to MOF concepts has to be defined in Ker-
meta. For instance MOF does not provide a semantic for behavior inheritance (concepts like method redefini-
tion, abstract method, etc does not have any sense in the MOF).

3.1. Architecture

Kermeta has been designed to be fully compatible with the OMG standard meta-data language EMOF. The
metamodel of Kermeta is divided into two packages :

• structure which corresponds to EMOF

• behavior which corresponds to the actions. This section gives an overview of these two packages and their
relationships.

Thanks to this reuse, Kermeta is fully compatible with EMOF. This is useful in the promotion of Kermeta as
a metalanguage.

66

Figure 3.1. EMOF extension and Kermeta promotion

Note

This weaving of behavior into MOF has been explained in Pierre-Alain Muller, Franck Fleurey, and
Jean-Marc Jézéquel. -- Weaving executability into object-oriented meta-languages. -- In S. Kent L.
Briand, editor, Proceedings of MODELS/UML'2005, volume 3713 of LNCS, pages 264--278, Mont-
ego Bay, Jamaica, October 2005. Springer.

The link between structure and behavior is made through the property body of class Operation which al-
lows to define the behavior of an operation using a Kermeta expression.

A more detailed description of the architecture of Kermeta is presented in next sections.

3.2. Structure package

Figure 3.2. Structure package

Kermeta Metamodel

67

http://www.kermeta.org/documents/articles/Muller05a
http://www.kermeta.org/documents/articles/Muller05a
http://www.kermeta.org/documents/articles/Muller05a
http://www.kermeta.org/documents/articles/Muller05a

This figure presents the main classes of the structure package. To design this package, we started from
EMOF and completed it to build the Kermeta language. The choice of EMOF is motivated by two main reas-
ons : firstly it is standardized by the OMG and secondly is is well-supported by tools such as Eclipse/EMF.

As MOF is not initially designed to be executable, several concepts have to be completed and slightly modi-
fied to build an executable language. The first and most important modification is to add the ability to define
the behavior of operations. To achieve this we define an action language in the package behavior of Ker-
meta. The class hierarchy of the package behavior is presented on Figure 3.5, “Behavior package”. In prac-
tice, Kermeta expressions have been designed by adding model modification capabilities (like assignment of
properties for instance) to OCL expressions.

This represents the static part of the metamodel.

As a reminder, the structure of Kermeta is derived from EMOF from the OMG. During the build process, we
merge and connect it with the behavior part.

So all the meaning of those metaclasses are very close to those described in the OMG standard specification.

3.2.1. NamedElement view

Figure 3.3. NamedElement class diagram

This figure presents the element in the structure package that have a name. Kermeta relies on in various situ-
ation (For example in the typechecking process). The containment hierarchy is also presented since it is used
in the identification process.

Class is a bit special, since its name is a derived property.

3.2.2. Type system view

Kermeta Metamodel

68

Figure 3.4. Kermeta type system class diagram (the big picture)

This figure presents the global view of all the metaclasses involved in Kermeta type system.

Basically, you can notice the split between Type and TypeDefinion needed in order to handle generics.

The containment is also represented here.

Please note that there is both Type and TypeDefinition. This is needed because of the support of the
generics. For example in

var mycoll : Collection<String>

mycoll is a VariableDecl which point to a Class whose typeDefinition is the ClassDefinition Collec-
tion and has a TypeVariableBinding that lead to String.

TODO add an object diagram or a figure to illustrate.

TODO : if time : provide a set of small diagrams that focus of some elements of the type system.

3.3. Behavior package

Kermeta Metamodel

69

Figure 3.5. Behavior package

3.3.1. Control Structures

Kermeta provides basic control structures : block, conditional branch, loop, and exception handling. Here
there an excerpt of the Meta-model describing control structures. Each basic control structures derives from
the Expression concept.

Figure 3.6. Control structure

3.3.2. Variables

Kermeta Metamodel

70

Figure 3.7. Use of variables

3.3.3. Call Expressions

Figure 3.8. use of exceptions

3.3.3.1. CallSuperOperation

Kermeta Metamodel

71

In the following example, the type of super(element) is CallSuperOperation:

class ParentClass {
operation op(element : Integer) : Integer is do

result := element + 1
end

}

class ChildClass {
method op(element : Integer) : Integer is do

result := super(element)
end

}

3.3.3.2. CallVariable

The type of callvar, below, is CallVariable:

var myvar : Integer
var callvar : Integer init 4
//
myvar := callvar

A special case, when calling a lambda expression : the type of lf in the assignment of res, is CallVariable.

var lf : <Integer->Integer>
var res : Integerlf := function { i : Integer | i.plus(1) }
// The type of lf, below, is CallVariable
res := lf(4)

3.3.3.3. CallResult

The type of result is CallResult

operation op() : Integer is do
result := 61

end

3.3.3.4. CallFeature and SelfExpression

• The type of self is a SelfExpression!

• The type of attr in the body of the operation myoperation is CallFeature (a callfeature on self), and so is
the type of myoperation(4) (a callfeature on a).

class A {
attribute attr : Integer
operation myoperation(param : Integer) : Integer is do

Kermeta Metamodel

72

result := self.attr + param
end

}
class B {

operation anotheroperation() : Integer is do
var a : A
result := a.myoperation(4)

end
}

3.3.4. Assignment

Figure 3.9. Kermeta assignment expression

In the following example, thetarget is of type CallExpression and thevalue is of type Expression.

var num : Numeric
var thetarget : Integer
var thevalue : Integer
// assignment : thetarget->target, thevalue->value
thetarget := thevalue
// casting : a is casted into the type of num which is Numeric.
num ?= a

3.3.5. Literals

Kermeta Metamodel

73

Figure 3.10. Kermeta Literal Expression

var i : Integer
i := 5 // 5 is a IntegerLiteral
var s : String
s := "I am a string" // "I am a string" is a StringLiteral

3.3.6. Lambda Expression

Kermeta Metamodel

74

Figure 3.11. Kermeta lambda expressions

3.4. Viewing Kermeta metamodel

In Kermeta, you can view its metamodel by several ways.

First, the ecore file kermeta_java.ecore is available in the lib folder of Kermeta main plugin.It is used when
saving a Kermeta program in XMI ("Compile to XMI" function on *.kmt files). You can then load Kermeta
program as a model, typically to transform it.

Warning

You should not try to execute operations on Kermeta models you've just dynamically created unless
you froze it. This is a feature which has not been completly tested.

Another typical way to access to a Kermeta model and Kermeta metamodel is to use the reflection. All ob-
jects inherits from Object that defines the getMetaClass operation. This use is used in one of the samples
of Section 2.18, “Dynamic evaluation of Kermeta expressions” (when it selects an operation to be executed).

At last, the parse method on dynamic expression presented in section Dynamic evaluation of Kermeta expres-
sions can give you some way to access a Kermeta model as it parses a Kermeta text and provides the corres-
ponding model.

Kermeta Metamodel

75

CHAPTER 4

Kermeta framework

Kermeta is bundled with a framework that provides the base functionalities for metamodel engineering.

Tip

When you write require kermeta at the head of your file, you are importing the file frame-
work.km located in the Kermeta plugin.

Currently, it provides the following packages :

Packages in Kermeta framework

kermeta::interpreter This package defines some classes related to Kermeta interpreter and
also to Kermeta surface syntax. Some uses of this package are illus-
trated in Section 2.18, “Dynamic evaluation of Kermeta expressions”.

kermeta::persistence This package defines the notion required to serialize and deserialize
models. This is illustrated in Section 2.12, “Loading and saving mod-
els” and in the EMF tutorial document (ht-
tp://www.kermeta.org/documents/emfTutorial/)

kermeta::kunit This is a basic support for unitary tests (like Junit but for Kermeta).

ker-
meta::language::structur
e

It contains the classes of Kermeta structure. Note that it slightly differs
from the kermeta_java.ecore due to an inheritance to the classes in
Kermeta::reflexion. However, it proposes the very same functionalit-
ies.

ker-
meta::language::behavior

It contains the classes for the behavior of Kermeta.

kermeta::exceptions It defines various exceptions that you can use in Kermeta. Inheriting
from kermeta::exceptions::Exception allows to give more information
to the end user because it will also provide a stack trace (which would
not be available otherwise).

kermeta::io This package provides basic support for input/output with Kermeta. It
is voluntary minimal because that not the main role of Kermeta to
provide such primitives. In the future, this package may even disappear
and be replaced by the ability to directly call Java libraries.

kermeta::reflection This package contains all the abstract classes needed for the reflexivity
of Kermeta. The concrete implementation are in kermeta::standard or
kermeta::structure.

76

http://www.kermeta.org/documents/emfTutorial/
http://www.kermeta.org/documents/emfTutorial/

kermeta::utils This package defines various tool classes that cannot be part of the
core of the language, but are important enough to be part of the frame-
work.

kermeta::standard This package defines all the basic objects needed for a typical Kermeta
application. For example, it defines data types, collections, etc.

Note

For more details about the content of these packages, please look at the generated documentation
available on line: http://www.kermeta.org/docs/KermetaFramework/framework.km.html

Kermeta framework

77

http://www.kermeta.org/docs/KermetaFramework/framework.km.html

CHAPTER A

Language keywords

The following keywords are used by Kermeta textual syntax.

Note

If you want to name some class or property using those names, you'll need to escape them using
the ~ (tilda).Ex: class ~class {}

(See Section 2.2, “Escaping reserved keywords”)

Keyword Usage

@pre Represents self before the call to this operation in the scope of a post
condition. See Section 2.19.1.1, “pre – post conditions syntax”

abstract Modifier for class or operation

alias Definition of a primitive type

and Boolean expression

attribute Definition of an attribute

bag See Section 2.14, “Collections”

class Definition of a class

do Beginning of a block

else Else part of a conditional instruction

end End of a block

enumeration Definition of an enumeration

extern Call of a java static operation

false Boolean literal

from Loop instruction

78

Keyword Usage

function Declares a local function

getter Declaration of a property getter

if Conditional instruction

inherits Declartion of the super classes of the class

init Initialization of a variable

inv Declaration of an invariant. See Section 2.19.1.2, “Invariant constraint
syntax”

is
part of the declaration of an operation or method. See Section 2.8.2,
“Defining operations”

loop Loop instruction

method Redefinition of an operation. See Section 2.8.2, “Defining operations”

modeltype Definition of a modeltype.

not Boolean expression

operation Declaration of an operation. See Section 2.8.2, “Defining operations”

or Boolean expression

oset See Section 2.14, “Collections”

package Declaration of package

post Declaration of a postcondition. See Section 2.19.1.1, “pre – post condi-
tions syntax”

pre Declaration of a precondition. See Section 2.19.1.1, “pre – post condi-
tions syntax”

property Declaration of a derived property

raise Throw an exception

raises Declares the exception that an operation can throw

readonly Modifier for properties

reference Declaration of a reference

Language keywords

79

Keyword Usage

require Declaration of a required file

rescue Catch an excetion

result Special variable used for the return value of an operation. See Sec-
tion 2.8.2, “Defining operations”

setter Declaration of property setter

self Special varaible representing this instances

set See Section 2.14, “Collections”

seq See Section 2.14, “Collections”

super Call to the super operation

then Then part of a conditional instruction

true Boolean literal

until Loop condition

using Shortcut used to avoid to write the full qualified name

value Special variable used in getter and setter to represent the actual value of
the property

var Declaration of a variable

void Void literal

Language keywords

80

CHAPTER B

Known Kermeta tags

This annex collect the use of known tags. They are generally used as an extension on Kermeta in these typic-
ally uses :

• supporting Ecore compatibility,

• preparing a future language improvement,

• supporting a specific need that isn't part of the language core.

Note

TODO : finish this by looking into kermeta2ecore transformation

Kown tags :

aspect Possible values. "true", case insensitive, any other value is considered as "false".

Context. Class

Use description. Old way to indicate that a Class must be reopened as an aspect of an-
other Class and then merging its features. We now prefer to use the dedicated keyword.

Use sample.

@aspect "true"
class MyClas {
// ...
}

ecoreUri Possible values. An nsURI.

Context. Package

Use description. Indicates the nsUri for the given package when it is transformed in
Ecore.

Use sample.

@ecoreUri "http://myPackage/1.0/"
package myPackage;

81

mainClass Possible values. Qualified name of a class in the Kermeta program.

Context. ModelingUnit

Use description. Indicates a preferred class from which the run configuration should
try to start the Kermeta program. This helps to create a default run configuration. Must
be used with the mainOperation tag.

Use sample.

@mainClass "myPackage::MyMainClass"
@mainOperation "main"

package myPackage;

require kermeta
class MyMainClass
{

operation main() : Void is do
// TODO: implement 'main' operation

end
}

mainOperation Possible values. name of an operation in the main class.

Context. ModelingUnit

Use description. Indicates a preferred operation from which the run configuration
should try to start the Kermeta program. This helps to create a default run configura-
tion. Must be used with the mainClass tag. The operation must : either have no para-
meter, or have string parameters.

Use sample.

@mainClass "myPackage::MyMainClass"
@mainOperation "main"

package myPackage;

require kermeta
class MyMainClass
{

operation main() : Void is do
// TODO: implement 'main' operation

end
}

Known Kermeta tags

82

CHAPTER C

Kermeta / Ecore mapping

Kermeta natively integrates Ecore defintions, however it uses an internal mapping in order to import ecore
model as Kermeta models. In the other way round a Kermeta model can be translated into a pure ecore mod-
el. (for example in the compiler)

This annex indicates how Kermeta models are translated into Ecore models and vice versa.

Note

TODO : finish this by looking into kermeta2ecore transformation and the compiler specifications.

Kermeta concept Ecore concept Notes

Class EClass

Constraint
(invariant)

EAnnota-
tion(source="kerm
eta.inv") + Detai-
lEntry

Constraint
(precondition|post
condition)

EAnnota-
tion(source="kerm
eta.pre"|"kermeta.
post") + Detai-
lEntry

Constraint
(postcondition)

EAnnota-
tion(source="") +
DetailEntry

Operation EOperation

Tag (general
case)

EAnnota-
tion(source="kerm
eta") + DetailEntry

Most Tags are translated into an EAnnotation with
source="kermeta" and one DetailEntry with
key=NameOfTheTag and value=ValueOfTheTag. If this
is a /** */ comment, the name of the tag is "documenta-
tion".

Tag (applied on
Constraint)

EAnnota-
tion(source="kerm
eta.inv.doc") + De-

EAnnotation.references points to the EAnnotation repres-
enting the Constraints. DetailEntry with
key=NameOfTheTag and value=ValueOfTheTag. If this

83

Kermeta concept Ecore concept Notes

tailEntry
is a /** */ comment, the name of the tag is "documenta-
tion".

Kermeta / Ecore mapping

84

	Kermeta language
	Table of Contents
	Preface
	Chapter 1. Introduction to the language
	1.1. Presentation
	1.2. An imperative syntax
	1.2.1. First Program
	1.2.2. Classic features
	1.2.3. Corresponding sections in the Reference chapter

	1.3. An object-oriented language
	1.3.1. Corresponding sections in the Reference chapter

	1.4. A model-oriented language
	1.4.1. Associations : toward a first concrete example of a Kermeta model
	1.4.2. Loading an existing model
	1.4.3. Navigation in a model
	1.4.4. Model type
	1.4.5. Kermeta model reflexively available
	1.4.6. Corresponding sections in the Reference chapter

	1.5. Aspect-oriented language
	1.5.1. Corresponding section in the Reference chapter

	1.6. Some "advanced" features
	1.6.1. Functions in Kermeta
	1.6.2. Other advanced features
	1.6.2.1. High level modeling
	1.6.2.2. Other technical features

	Chapter 2. Reference
	2.1. Comments
	2.1.1. Simple and multi-line text comments
	2.1.2. Linked comments

	2.2. Escaping reserved keywords
	2.3. Operators
	2.4. Statements : block, condition, loop
	2.4.1. Block statement
	2.4.2. Conditional statement
	2.4.3. Loop Statement

	2.5. File dependency : structuring code
	2.5.1. Require
	2.5.2. Accepted require content
	2.5.3. Supported protocols
	2.5.4. Organizing code

	2.6. Using Variables
	2.7. Basic types
	2.7.1. Primitive types
	2.7.2. Enumeration types
	2.7.3. Local datatype using "alias"

	2.8. Classes and methods
	2.8.1. Classes
	2.8.2. Defining operations
	2.8.2.1. Result
	2.8.2.2. Operations as main entry point.

	2.8.3. Initializing classes
	2.8.4. Rationale
	2.8.4.1. No constructor
	2.8.4.2. No operation overloading

	2.9. Inheritance
	2.9.1. Using simple inheritance
	2.9.2. Cast
	2.9.2.1. Casting using conditional assignment
	2.9.2.2. Casting using asType
	2.9.2.3. Useful functions when casting

	2.9.3. Using multiple inheritance
	2.9.4. Overriding behavior with methods
	2.9.5. Some limitations
	2.9.5.1. Operation redefinition
	2.9.5.2. Operation specialization
	2.9.5.3. Operation overloading
	2.9.5.4. Conflicts related to multiple inheritance

	2.10. Genericity
	2.10.1. Generic classes
	2.10.2. Generic operations
	2.10.3. Type usable with genericity

	2.11. Exception handling
	2.12. Loading and saving models
	2.12.1. Prepare a model
	2.12.2. Load a model from an EMF Resource
	2.12.3. Save a model into an EMF Resource

	2.13. Packages
	2.13.1. Definition
	2.13.2. Use of packages
	2.13.3. Syntaxic sugars

	2.14. Collections
	2.14.1. Definition and initialization
	2.14.2. Some existing useful functions
	2.14.2.1. Function each
	2.14.2.2. Function forAll
	2.14.2.3. Function select
	2.14.2.4. Function reject
	2.14.2.5. Function collect
	2.14.2.6. Function detect
	2.14.2.7. Function exists

	2.15. Class properties
	2.15.1. Attributes (attribute), references (reference)
	2.15.2. properties modifiers
	2.15.3. Association using opposite properties
	2.15.4. Derived properties (property)
	2.15.5. How to access and control the properties in Kermeta
	2.15.6. Assignment behavior for attribute (and reference)

	2.16. Objects comparison
	2.16.1. equals method
	2.16.2. Comparison for Primitive Types
	2.16.3. Collection comparison

	2.17. Lambda Expressions and functions
	2.17.1. Syntax
	2.17.2. Some existing useful functions
	2.17.3. Defining new functions in a class
	2.17.4. Defining lambda expression variables

	2.18. Dynamic evaluation of Kermeta expressions
	2.19. Design by contract (pre, post, inv contraints)
	2.19.1. Writing a contract
	2.19.1.1. pre – post conditions syntax
	2.19.1.2. Invariant constraint syntax

	2.19.2. Checking your constraints
	2.19.2.1. Checking pre – post condition
	2.19.2.2. Checking invariant

	2.20. Weaving Kermeta code
	2.20.1. Textual syntax for merging
	2.20.2. Example 1: Simple Class merge
	2.20.3. Example 2: merge with feature redefinition
	2.20.4. Example 3: merge with operation overload
	2.20.5. Aspect and inheritance
	2.20.6. Aspect and abstract
	2.20.7. Aspect without common base

	2.21. Model type
	2.21.1. Definition of a model type
	2.21.2. Using Model types variables
	2.21.3. Model type serialisation
	2.21.4. Model type conformance
	2.21.5. Using Model types in generic classes/operations
	2.21.6. A more complex example of conformance : FSM variants

	2.22. Using existing java code in Kermeta
	2.22.1. Using extern to call java code
	2.22.2. Requiring jar file to call java code

	2.23. Cloning objects

	Chapter 3. Kermeta Metamodel
	3.1. Architecture
	3.2. Structure package
	3.2.1. NamedElement view
	3.2.2. Type system view

	3.3. Behavior package
	3.3.1. Control Structures
	3.3.2. Variables
	3.3.3. Call Expressions
	3.3.3.1. CallSuperOperation
	3.3.3.2. CallVariable
	3.3.3.3. CallResult
	3.3.3.4. CallFeature and SelfExpression

	3.3.4. Assignment
	3.3.5. Literals
	3.3.6. Lambda Expression

	3.4. Viewing Kermeta metamodel

	Chapter 4. Kermeta framework
	Appendix A. Language keywords
	Appendix B. Known Kermeta tags
	Appendix C. Kermeta / Ecore mapping

