
How the workbench is able to
help you in your metamodel-

ling tasks

Didier Vojtisek, Francois Tanguy, Cyril Faucher
Published Build date: 3-November-2010

$LastChangedDate:: 2010-06-02 10:42:20#$

Chapter 1. Introduction .. 1

Chapter 2. The Text Editor ... 3

2.1. The document .. 3

2.2. Auto-completion ... 4

2.3. Outline .. 4

2.4. Errors reporting .. 7

2.5. Debugging information .. 8

2.6. Editor preferences .. 9

Chapter 3. Interpreting a Kermeta code ... 11

3.1. Using a Run configuration ..11

3.2. Run the interpreter with a Java command line ..14

3.2.1. Command line options ... 15

3.2.2. About the URI map .. 16

3.2.3. Run the eclipse version of the interpreter in eclipse 16

Chapter 4. Compiling a kermeta code into java 19

4.1. In a nutshell ...19

4.2. Calling the complier ..19

4.2.1. Launching a compilation process .. 19

4.2.2. Customizing the plugin generation .. 19

4.3. Running the compiled code (RunConfiguration) ...20

4.3.1. Running the compiled code inside Eclipse in development mode 20

4.3.2. Running the compiled code inside Eclipse in deployed mode 20

4.3.3. Running the compiled code outside Eclipse ... 20

Chapter 5. Debugging .. 22

5.1. Global View ...22

5.2. The Watch View ...23

5.3. The Frame View ...23

5.4. The Editor View ...24

5.5. Debugging actions ..24

iii

Chapter 6. Help ... 26

Chapter 7. Transformations ... 27

7.1. Actions for Ecore files ...27

7.2. Actions for kmt files ..30

7.3. Actions for km files ...32

7.4. Traceability ..34

Chapter 8. Class diagram Kermeta Model editor 35

8.1. Overview ...35

8.2. Opening of a Kermeta class diagram ..36

8.3. Creating of a Kermeta class diagram ..37

Chapter 9. Kermeta Class TouchNavigator .. 42

Chapter 10. Ecore Model Editor .. 44

Chapter 11. Tip and tricks .. 45

11.1. Texteditor keyboard shortcuts ..45

11.2. Texteditor tips ...45

11.2.1. Quickdiff ... 45

How the workbench is able to help you in
your metamodelling tasks

iv

List of Figures

1.1. Kermeta workbench screenshoot (v1.2.2). ... 2

2.1. The Kermeta Textual Editor .. 3

2.2. Auto-Completion in the Kermeta Textual Editor ... 4

2.3. The outline in Kermeta Text Editor ... 6

2.4. Error reporting ... 8

2.5. Debugging Information in the Kermeta Text Editor .. 9

2.6. TextEditor preferences ..10

3.1. Run menu ..11

3.2. Kermeta run configuration - main tab ..12

3.3. Run shortcut to run configuration on the kmt files ...13

3.4. Java run configuration main tab ... 17

3.5. Java run configuration arguments .. 17

3.6. Java run configuration classpath (using the interpreter jars in the texteditor) 18

5.1. The Debugger global view ...22

5.2. The Watch View ...23

5.3. The Frame View ...24

5.4. The Editor View ...24

6.1. Eclipse Help Contents for Kermeta. ... 26

7.1. Ecore to Km transformation ..28

7.2. Ecore to Kmt transformation ...29

7.3. Actions on ecore model ..30

7.4. Kmt to Ecore transformation ...31

7.5. Kmt to Km transformation ...32

7.6. Km to Ecore transformation ..33

7.7. Km to Kmt transformation ...34

8.1. Class diagram Kermeta Model editor - overview ...36

8.2. Opening of a Kermeta class diagram ..37

v

8.3. Creating of a Kermeta class diagram from scratch - 1rst step38

8.4. Creating of a Kermeta class diagram from scratch - 2nd step39

8.5. Creating of a Kermeta class diagram from an existing Kermeta model - 1rst step 40

8.6. Creating of a Kermeta class diagram from an existing Kermeta model - 2nd step 41

9.1. Kermeta Class TouchNavigator. .. 42
11.1. Quickdiff recommended preferences .. 45

How the workbench is able to help you in
your metamodelling tasks

vi

CHAPTER 1

Introduction

Kermeta is distributed with a workbench that provides many features.

In the bundle version 1.3.0 you have:

• Text editors for kermeta textual syntax and KET (kermeta template emitter)

• an outline view

• a problems view

• an Ecore Model Editor (provided by Eclipse/EMF)

• an interpreter

• a debugger

• a compiler (compiles your kermeta code into an eclipse java plugin)

• Transformations to and from Kermeta. (especially to Ecore)

• Other helper transformations like Ecore merge

• Dedicated Graphic editor

• Object TouchNavigator

• KermetaDoc view (showing the documentation associated to your metamodel)

• Help system

Useful features needing the installation of an external tool:

• Class diagram Ecore Model editor. This feature is provided by EclipseUML (Omondo) (a community edi-
tion is available)

Here is a screenshot of a typical Kermeta workbench.

1

Figure 1.1. Kermeta workbench screenshoot (v1.2.2)

Warning

Kermeta is an evolving software and despite that we put a lot of attention to this document, it may
contain errors or not conform to the latest version. If you find any error or have some information
that improves this document, please send it to us using the bugtracker in the forge: ht-
tp://gforge.inria.fr/tracker/?group_id=32 Last check: v1.2.2

Introduction

2

http://gforge.inria.fr/tracker/?group_id=32
http://gforge.inria.fr/tracker/?group_id=32

CHAPTER 2

The Text Editor

2.1. The document

Nowadays a textual editor is not just an editable document. Many informations have been provided to the
user in order to get improved editing performances. It is quite common to find textual editor with coloring
syntax, auto-completion and outline. These three items working together usually makes a good textual editor.
That is the reason why the Kermeta platform provides such an editor. Below, you can find the global view of
the Kermeta editor.

Figure 2.1. The Kermeta Textual Editor

3

2.2. Auto-completion

To develop faster and faster, some nice helpful tools now are usual. One of them is the auto-completion. Ac-
cording to a context, a list of item will be proposed. Using the arrows key and the carriage return key, you
can select quickly and easily the item you want. The important thing is that, the list of item is calculated in
order to only propose some relevant items. The figure below shows the auto-completion for "stdio" which is
a special class in Kermeta (as System for Java). The typed point makes the system think that you want to call
a method on "stdio". Then all the callable methods are proposed and you can choose one of them.

Note

The usual <ctrl>+<space> keyboard shortcut is used to access the code completion

Figure 2.2. Auto-Completion in the Kermeta Textual Editor

2.3. Outline

The outline is a structural view of your program. Code is not visible in this view, but the structure (packages,
classes, attributes, methods and constraints) are visible in a tree hierarchy. Usually the outline position is on
the top right side of the Eclipse's window. You can get advantages of the outline, when your program reaches
a big size and when it is difficult to get a good visibility on the program's structure. Browsing the outline is
much more faster than browsing the file. Moreover, clicking on an item (packages, classes, attributes or
methods) brings you to that item in the file.

The following buttons are available on this view :

• sort features : The content of the outline is sorted alphabetically.

The Text Editor

4

• Flatten inheritance : Show package hierarchy

• Display all the features of your classes. The inherited features are displayed using a specific icon set.

• Show imported types : Show all the classes that are declared using the require statement in this file.

Note

The Flatten inheritance also display the features of the Object class as all the Kermeta classes in-
herit from it.

Warning

The "Show imported types" feature works on a per file basis and then it only shows the features de-
clared using the require statement in this file and NOT all the files in your project. This option is
really useful when you work with kermeta aspects since it display the elements in your faile and the
elements imported by aspect.

In addition, the elements are colored in order to help to identify where and how an element is defined.

The Text Editor

5

Figure 2.3. The outline in Kermeta Text Editor

The following meaning are assigned to the colors in this view :

The Text Editor

6

• Red : The element is defined in the current file. It applies to : Packages, Classes, Attributes, References,
Derived Properties and Operations.

• Blue : The element is defined in an imported (required) file. It applies to : Packages, Classes, Attributes,
References, Derived Properties and Operations. On classes features, this typically represent features impor-
ted via an aspect.

• Yellow : The element is inherited from another class (regardless of the containment in the file). It applies
to Attribute, Reference, Derived properties and Operations

• Green : The operation is imported via an aspect and is still abstract.

• Grey : The package doesn't define any class.

Tip

A double click will open the editor in order to show you the selected element. This feature works
only if the element to display is in a kmt file.

Tip

If you have activated the KermetaDoc view, it will show the documentation associated to the selec-
ted element.

Note

In version 1.2.2, the constrains don't have a color differentiation.

2.4. Errors reporting

The textual editor is used to display extra pieces of information than simple text. In the figure below, a pars-
ing error is reporting because of the semicolon which is not allowed in the language. The nice is thing is that
in the Eclipse's problems view, just by double clicking on an error opens the erroneous file and make the
cursor focusing on the correct line.

In addition, a list of all current errors is available in the general "Problems view".

The Text Editor

7

Figure 2.4. Error reporting

2.5. Debugging information

Kermeta is meant an executable language and provides a debugger. So, the textual editor is used to interact
with the debugger.

Like in a Java style, some breakpoints can be added to the program by right clicking on the grey line at the
left of the editor (as in the figure below). The breakpoint will be added in front of the selected line. After-
wards, when running the debugger, the program will halt at every breakpoint it goes through. At this mo-
ment, you will be able to have a look at the variables' value and run step by step or step into some methods.

See Chapter 5, Debugging for more details on the debugger features.

The Text Editor

8

Figure 2.5. Debugging Information in the Kermeta Text Editor

2.6. Editor preferences

You can customize your text editor by selecting Window from the Eclipse main menu and then Preferences.
The image below shows the page configurator.

The Text Editor

9

Figure 2.6. TextEditor preferences

The Text Editor

10

CHAPTER 3

Interpreting a Kermeta code

Kermeta workbench allows to interpret and run your Kermeta code in several ways.

3.1. Using a Run configuration

For those who already know how to run Java applications, this is a similar approach but for Kermeta files.

You'll need to create a new run configuration from the "Run/Run..." menu.

Figure 3.1. Run menu

Caution

The run menu is available only with some perspectives. If you don't see the run menu, switch to the
Kermeta perspective.

11

In the dialog, you selects the file, the main class and the main operation that must be run.

Search buttons will help you to find these elements in your files.

Caution

The search button may not work properly if your file contains errors.

Figure 3.2. Kermeta run configuration - main tab

Two optional annotations in your Kermeta code allow you to save time while creating run configurations.
The @mainClass and @mainOperation are used to fill field when creating a new configuration.

Ex:

@mainClass "fsm::Main"
@mainOperation "mainloadFSM"

Then, once you have your configuration, you can run it by all the means provided by Eclipse. Ie. "Run
Last Launched", " Run History", ... available in the menus or in the toolbars.

Tip

A shortcut allows you to quickly start a Kermeta run configuration. It is available in the popup menu
of *.kmt files. The " Run As/Kermeta App " button runs an existing configuration and the " Run
As/Run... " button opens the configuration dialog.

Interpreting a Kermeta code

12

Figure 3.3. Run shortcut to run configuration on the kmt files

The operation arguments field allow you to pass some strings as parameters of the operation you are launch-
ing.

Interpreting a Kermeta code

13

In this sample screenshot, the FSM take a string as teh path to the file that will be loaded and simulated.

In addtion to this simple scenario, in the common Tab of the Kermeta run configuration, you can:

• save your configuration in a file, so you can share it with other users: in "Common" tab button "Shared
file"

• specify where the stdio outputs must be sent. Typically, this can be in the Eclipse console or in a file.

• specify additional entries in the interpreter classpath that must be taken into while running this kermeta
code. This is needed if you use "extern" call to your own jars.

Tip

If you specify the kermeta project u=in the run configuration and if this project is an eclipse plugin,
then the interpreter will automatically take this plugin and all its dependencies into account in tha
classpath.

3.2. Run the interpreter with a Java command line

You can run Kermeta interpreter from the command line. For this you need to run the java class
org.kermeta.interpreter.api.RunCommandLine which is available in
fr.irisa.triskell.kermeta.interpreter plugin. The RunCommandLine class allows to pass
the name of: the Kermeta source file, and optionally the name of the class and the operation to run.

Note

The package org.kermeta.interpreter.api provides different facades in order to run a Kermeta pro-
gram with the interpreter from a java program. You can either have a look to the document Deploy-
ing Kermeta code manual or you may also have a look into class RunCommandLine to see how it
was implemented.

The interpreter command line is available in two main forms : as a set of eclipse plugin (it is available with
all kermeta version deployed in Eclipse, or as a standalone jar (see Kermeta download page for the various
distributions).

The standalone bundle is available in two version : all in one jar (typically ker-
meta_standalone_full_1.3.0.jar), or only kermeta in the main jar (typically ker-
meta_standalone_no_thirdparty_in_main_jar.1.3.0.zip. In this second version, the
thirdparty jar aren't included.

Depending wether you use the standalone jars or the jar embedded in eclipse, the process will be more or less
simple. The simpliest is to use the standalone version because you don't need to deal with the classpath.

java -jar kermeta_standalone.jar -U ecore_mdk/add_observer.kmt -C pattern::AddObserver -O main❶
input_models/needs_observer.ecore output_models/ Compteur Afficheur❷

❶ This sample launches the file add_observer.kmt and will start the operation main of the class
pattern::AddObserver.

❷ This sample kermeta programs takes 4 strings as parameters.

Interpreting a Kermeta code

14

http://kermeta.org/documents/deployment_manual/
http://kermeta.org/documents/deployment_manual/
http://gforge.inria.fr/frs/?group_id=32

Example 3.1. Simpliest use of the standalone version on the command line

3.2.1. Command line options

The command line needs several options to run properly a kermeta program.

.

• -C : (takes 1 argument) Qualified name of the class to run

ex: myPackage::MyClass

Note that it will not instanciate the class (ie. self will return void)

• -H : (takes 0 argument) Display the help

• -T : (takes 0 argument) Run as a test suite

• -P : (takes 0 argument) Display Profiling info

• -K : (takes 1 argument) Location for kermeta standard unit(framerwork.km) (KermetaUnit.STD_LIB_URI
variable)

• -O : (takes 1 argument) Name of the operation to run

• -U : (takes 1 argument) URI of the unit file that must be loaded

• -M : (takes 1 argument) Indicate a file containing URI_MAP (This is useful to solve some model loading
troubles)

Other values on the command line will be passed as string to the operation

java -jar kermeta_standalone.jar -P -U ../ModelEngineeringCourse/transfo/add_observer.kmt -C pattern_macros::Main -O main❶
-K lib/framework.km❷ ../models/needs_observer.ecore Compteur Afficheur❸

❶ This sample launches the file add_observer.kmt and will start the operation main of the class
pattern_macros::Main.

❷ forces the interpreter to use a specific framework.km instead of the one inside the jar.
❸ This sample kermeta programs takes 3 strings as parameters.

Interpreting a Kermeta code

15

Example 3.2. Example of a kermeta program called with the standalone version on the
command line

3.2.2. About the URI map

When you run a kermeta program outside of Eclipse, the uri of type platform:// are not resolved since this is
the role of Eclipse to resolve them. So, when running outiside of Eclipse, you need to help this resolution.

The resolution can be done using a map, whenever it find the key, it will replace it with the associated value.
Like that you can transform platform:/plugin/ into a physical location in your disk.

With RunCommandLine.java, this is the option -U which allow to specify a file that contains the mapping.

This uri map file uses the syntax of java properties files.

Example of uri.map file which maps some platform:// urls into file:// urls

#Typical uri.map file
"platform:/plugin/" "file:/C:/eclipse3.4/eclipse/workspace_head/"
"platform:/resource/" "file:/C:/eclipse3.4/eclipse/workspace_head/"
"kconf:/loader/" "file:/C:/eclipse3.4/eclipse/workspace_head/org.kermeta.io.loader/instances/" ❶

❶ This special uri is used by kermeta to retrieve the folder instances in the plugin
org.kermeta.io.loader. Kermeta intepreter cannot work correctly without it.

Another easy way (not detailed here) would be to retrieve one of the standalone versions and run it from
eclipse.

Tip

With this map mechanism, you can also translate the platform uris into jar protocol. This protocol al-
lows to search within a jar. for example, jar:file:/my.jar!/src/kermeta/framework.km
opens the file my.jar and pick the file named framework.km into the subfolder src/kermeta in
the jar.

3.2.3. Run the eclipse version of the interpreter in eclipse

In this section we focus on calling the interpreter embedded in an eclipse installation.

Note

This is quite an advanced use case recommanded only for people who understand how eclipse files
are organized and can manually create a classpath to retreive the various jar in eclipse installation.

From eclipse, you create a Java application LaunchConfiguration that will run the interpreter with your Ker-
meta file.

Interpreting a Kermeta code

16

Figure 3.4. Java run configuration main tab

Be careful, you must select "Include external jars when searching for a main class".

Interpreting a Kermeta code

17

Figure 3.5. Java run configuration arguments

The output level of interpreter traces can be set using a log4j configuration file. The concrete file to use is set
by the java property "kermeta.log4j.configurationfile.name". A sample of log4j configuration file is located
in the fr.irisa.triskell.kermeta.model plugin.

Exemple add the following in the VM arguments box: -Dkermeta.log4j.configurationfile.name=
"../../plugins/fr.irisa.triskell.kermeta.model_1.3.0/kermeta_log4j_configuration.xml"

The classpath must be carefully set using the jar of Kermeta, the jar of Ecore and of emf.

Figure 3.6. Java run configuration classpath (using the interpreter jars in the texteditor)

Tip

This RunCommandLine class or one of its sibling can also be used by any of your java pro-
grams.For more information please see the Javadoc reference of RunCommandLine.

Warning

This method need to know precisely which jar you use. If you update any of the required plugins
(kermeta, emf, ecore , ...) the directory containing the jar will change because eclipse use the ver-
sion number as part of the directory name. You'll have to manually change to ant file in order to re-
flect the update.

Interpreting a Kermeta code

18

CHAPTER 4

Compiling a kermeta code into
java

The workbench allows you to transform you kermeta code into Java-EMF code.

4.1. In a nutshell

The Kermeta compiler consists on a transformation from a kmt file to an Ecore file (step 1), finally the gener-
ation a plugin with the Java by using the EMF facilities (step 2). The resulting Java may be used both in Ec-
lipse Application or in Java Application (standalone) and is fully compatible with EMF. A listing of depend-
encies is available below. The compiling process generates a set of files: *.km, *.traceability, *.ecore, *.simk,
*.genmodel. A configuration file may be added: *.compiler.properties (more info. below). The 2nd step may
be replayed by a right-click on the generated Ecore file.

4.2. Calling the complier

4.2.1. Launching a compilation process

Right click on a kmt file: "Compile Kmt to EMF plugin (Experimental)", then an Eclipse plugin will be gen-
erated, after that you can try to run one generated main contained in runner Java package.

4.2.2. Customizing the plugin generation

You are able to add a "properties file" for customizing the plugin generation. This file must be in the same
folder than the main kmt file and respect the naming rule:
{kmt_file_name_without_the_kmt_extension}.compiler.properties This configuration file will be taking into
account, when you are compiling from a kmt file or the generated ecore file, for this last case you are able to
re-generate the plugin without redo kmt2{ecore, simk} The available properties are listed below, every prop-
erty is optional (the values are String without quote):

• plugin_id = {name and id of the generated plugin}

• copyright_header = {header include in each file}

19

• require_bundles = {plugin dependencies if your program depends on external plugins} | String separated
by comma

• bundle_version = {version number of your plugin like 0.1.0 instead of the default 1.0.0}

• main_operations = {operation qualifiedNames} | String separated by comma, e.g.: mypack-
age::MyClass::myMainOperation, mypackage::MyClass::myMainOperation2

• unzip_externs = {zip file containing the externs required to the compiled source code} | String separated
by comma, the String is composed of 2 parts separated by a ";", the first part is the location of the zip file,
the second one is the folder in the generated plugin, ex.: plat-
form:/resource/MyProject/util/externs.zip;src/java

• enable_emf_load_initialization = {enable EMF-reflection load initialization for large model} | String
equals to true or false

4.3. Running the compiled code (RunConfiguration)

4.3.1. Running the compiled code inside Eclipse in develop-
ment mode

Right-click on the generated class containing the Java Main method or you are able to create a "Java Run
Configuration" pointing the Java Main method

4.3.2. Running the compiled code inside Eclipse in deployed
mode

TODO

4.3.3. Running the compiled code outside Eclipse

Creating a standalone version of your compiled code, required libs:

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.emf.common_2.4.0.v200808251517.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.emf.ecore.xmi_2.4.1.v200808251517.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.emf.ecore_2.4.1.v200808251517.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.core.resources_3.4.0.v20080604-1400.jar"

• classpathentry kind="lib"

Compiling a kermeta code into java

20

path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.core.runtime_3.4.0.v20080512.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.emf.codegen_2.4.0.v200808251517.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.emf.ecoretools.registration_1.0.0.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.equinox.registry_3.4.0.v20080516-0950.jar"

• classpathentry kind="lib" path="C:/eclipse-ganymede/eclipse/plugins/fr.irisa.triskell.eclipse.util_1.2.0.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.equinox.common_3.4.0.v20080421-2006.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.core.jobs_3.4.0.v20080512.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/fr.irisa.triskell.kermeta.model_1.2.0.jar"

• classpathentry kind="lib"
path="C:/eclipse-ganymede/eclipse/plugins/org.eclipse.osgi_3.4.0.v20080605-1900.jar"

Note

This listing is in progress. Also the exact version of the plugins used may vary depending of your
version of Keremta and Eclipse.

Compiling a kermeta code into java

21

CHAPTER 5

Debugging

Since v0.1.0 Kermeta has a debugger. As any debugger, it proposes breakpoints step over, step into, run, re-
sume, visualization of variables, etc

5.1. Global View

A debugger offers users the possibility to interpret Kermeta's programs step by step, or stopping programs at
one moment to check the the programs' state. Above you can see the global view of the editor.

Figure 5.1. The Debugger global view

22

5.2. The Watch View

During programs execution, you may want to know variables' values. For that purpose, you can use the watch
view which displays all the variables accessible in the current context and their values. Moreover you can
browse those variables to have a deeper look inside variables.

Figure 5.2. The Watch View

5.3. The Frame View

A frame is a context environment for a call method. That means that for each method call, you have access to
its context that is to say the variables values. Obviously, it is strongly related to the watch view. Clicking on
one frame modifies the watch view. The frame view is also nice to follow the execution. For instance, in the
figure above, we know that the run method has called the step method which has called the fire method.

Debugging

23

Figure 5.3. The Frame View

5.4. The Editor View

When debugging, you surely want to know which line of code is executed. That is the reason why the Ker-
meta text editor is displayed with the outline. The current line of code is colored in green as in the following
figure. This green line is moving to the next instruction depending your action.

Figure 5.4. The Editor View

5.5. Debugging actions

There are three kind of actions you can execute:

• F5 : pressing the F5 key makes the debugger entering in the current operation.

Debugging

24

• F6 : pressing the F6 key makes the debugger stepping to the next operation.

• F8 : pressing the F8 key makes the debugger executing all the operations to the next breakpoint, if there is
some one.

Note

A nice feature is that you can add or remove breakpoints to your Kermeta file during debugging.

Debugging

25

CHAPTER 6

Help

The current help and many other documentation are available in the Eclipse Help system of your Eclipse in-
stallation: open Help -> Help Contents

Figure 6.1. Eclipse Help Contents for Kermeta

Tip

Alternatively, an online version of all those documents is available at ht-
tp://www.kermeta.org/documents

26

http://www.kermeta.org/documents
http://www.kermeta.org/documents

CHAPTER 7

Transformations

The workbench provides several additional tools available directly on the files using the popup menu.

Important

Several of the wizards provided are multipages wizards. This means that several advanced options
are available only after clicking on "Next" instead of clicking on "Finish". So if you get an error while
transforming a file, make sure that none of the options (on the main page or on the "Next" pages) fix
the default behavior for your special need.

7.1. Actions for Ecore files

• Export functions: On ecore file you can export it into a KM (kermeta program in xmi format) or in kmt
(Kermeta program using its textual syntax). As the ecore model may not be valid, the wizard provides
some quick fixes. Those quick fixes will for example detect and propose a default solution for multiple op-
erations with the same name.

27

Figure 7.1. Ecore to Km transformation

Transformations

28

Figure 7.2. Ecore to Kmt transformation

• Merge function: You can merge several ecore files, simply select them and click "merge". Its algorithm is
base on the names of the packages and classes.

• Register/Unregister EPackages function: You can register or unregister in the EMF registry the EPack-
ages defined in an Ecore model, simply select them and right-click "Register" or "Unregister".

Transformations

29

Figure 7.3. Actions on ecore model

7.2. Actions for kmt files

• From a kmt files you can export it to an ecore file. Each of the kermeta notion that don't have a specific
representation in ecore are stored into ecore annotations that will allow to roundtrip back to kermeta.

Transformations

30

Figure 7.4. Kmt to Ecore transformation

• The kmt file can also be exported into its model version (ie. Into a XMI file conformant to kermeta
metamodel). This is useful as this process also typecheck the model and thus allow to save some time
when loading other file which rely on the km version rather than the kmt version.

Transformations

31

Figure 7.5. Kmt to Km transformation

7.3. Actions for km files

• From a km files you can export it to an ecore file. Each of the kermeta notion that don't have a specific rep-
resentation in ecore are stored into ecore annotations that will allow to roundtrip back to kermeta.

Transformations

32

Figure 7.6. Km to Ecore transformation

• You can also prettyprint this model representation of a kermeta program into the textual representation of
this program.

Transformations

33

Figure 7.7. Km to Kmt transformation

7.4. Traceability

For many of those transformations, the wizard will propose you to store the traceability informations.

This is a special metamodel that stores a link between the sources elements and the target element so you can
reuse it later. For example, it will help the debugger to retrieve the correct line in the text version of the
source file even if you are running the km version.

This metamodel is very generic and can be used for any model.

Transformations

34

CHAPTER 8

Class diagram Kermeta Model
editor

8.1. Overview

The Kermeta Graphical Editor is a view of the Kermeta model as a class diagram. It is generated with the tool
"Topcased". The file containing the presentation informations is a *.kmdi. The *.kmdi is associated with a
*.km file. The *.kmdi and *.km files must be in the same folder.

35

Figure 8.1. Class diagram Kermeta Model editor - overview

8.2. Opening of a Kermeta class diagram

We can open it, simply select and right-click "Open with / Kermeta class diagram"

Class diagram Kermeta Model editor

36

Figure 8.2. Opening of a Kermeta class diagram

8.3. Creating of a Kermeta class diagram

In order to create a Kermeta class diagram you have 2 ways.

• Create a class diagram and the Kermeta model from scratch. Select the project or the folder where you
want create the class diagram and right-click "New / Other / Kermeta / New Kermeta class diagram".
Change the model name if you want.

Class diagram Kermeta Model editor

37

Figure 8.3. Creating of a Kermeta class diagram from scratch - 1rst step

Class diagram Kermeta Model editor

38

Figure 8.4. Creating of a Kermeta class diagram from scratch - 2nd step

• Create a class diagram from an existing Kermeta model. Select the existing km file and right-click "New /
Other / Kermeta / New Kermeta class diagram".

Class diagram Kermeta Model editor

39

Figure 8.5. Creating of a Kermeta class diagram from an existing Kermeta model - 1rst step

Class diagram Kermeta Model editor

40

Figure 8.6. Creating of a Kermeta class diagram from an existing Kermeta model - 2nd step

Class diagram Kermeta Model editor

41

CHAPTER 9

Kermeta Class TouchNavigator

The Kermeta Class TouchNavigator is a view that dynamically focuses on the element you are viewing in the
editor or the outline.

With its damping animation, it proposes an original way to navigate and analyze your metamodel classes.

>The color depends on the distance to the selected node.

Back and Forward button allow to navigate the history of selected nodes.

It provides several lens for smarter visualization. For example you can zoom, rotate, set the locality (ie. How
much nodes you display at once depending on the distance to the selection) or use the hyperbolic lens (Ie.
Change the edge length depending on the distance).

If you leave your mouse over a class, it shows its documentation.

Figure 9.1. Kermeta Class TouchNavigator

42

Tip

It is in alpha stage, feel free to notify us what you found interesting or not in this view.

Kermeta Class TouchNavigator

43

CHAPTER 10

Ecore Model Editor

This Editor is provided by Eclipse in EMF.

Since Kermeta metamodel is an extension of EMOF, it is possible to use this editor to edit Kermeta pro-
grams.

This based on the Ecore2Kermeta and Kermeta2Ecore transformations.

With the Ecore representation of your program, you can use the Ecore Model editor (from Eclipse\EMF) or
any other Ecore tool (for example Omondo.graphic editor)

This is described with more details in the EMF tutorial: ht-
tp://www.kermeta.org/docs/html.single/KermetaEMFTutorial/

44

http://www.kermeta.org/docs/html.single/KermetaEMFTutorial/
http://www.kermeta.org/docs/html.single/KermetaEMFTutorial/

CHAPTER 11

Tip and tricks

Tip

This section contains many useful information about how to use the Kermeta workbench.

11.1. Texteditor keyboard shortcuts

Keyboard shortcut Action

<CTRL>+<SPACE> Pertinent code completion. This work in several
places in the code.

[TODO check with the platform tip and tricks page which eclipse shortcut correctly work with Kermeta edit-
or]

11.2. Texteditor tips

11.2.1. Quickdiff

When working with CVS, the quickdiff is best used if it use the latest CVS revision as reference.

45

Figure 11.1. Quickdiff recommended preferences

Tip and tricks

46

	How the workbench is able to help you in your metamodelling tasks
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The Text Editor
	2.1. The document
	2.2. Auto-completion
	2.3. Outline
	2.4. Errors reporting
	2.5. Debugging information
	2.6. Editor preferences

	Chapter 3. Interpreting a Kermeta code
	3.1. Using a Run configuration
	3.2. Run the interpreter with a Java command line
	3.2.1. Command line options
	3.2.2. About the URI map
	3.2.3. Run the eclipse version of the interpreter in eclipse

	Chapter 4. Compiling a kermeta code into java
	4.1. In a nutshell
	4.2. Calling the complier
	4.2.1. Launching a compilation process
	4.2.2. Customizing the plugin generation

	4.3. Running the compiled code (RunConfiguration)
	4.3.1. Running the compiled code inside Eclipse in development mode
	4.3.2. Running the compiled code inside Eclipse in deployed mode
	4.3.3. Running the compiled code outside Eclipse

	Chapter 5. Debugging
	5.1. Global View
	5.2. The Watch View
	5.3. The Frame View
	5.4. The Editor View
	5.5. Debugging actions

	Chapter 6. Help
	Chapter 7. Transformations
	7.1. Actions for Ecore files
	7.2. Actions for kmt files
	7.3. Actions for km files
	7.4. Traceability

	Chapter 8. Class diagram Kermeta Model editor
	8.1. Overview
	8.2. Opening of a Kermeta class diagram
	8.3. Creating of a Kermeta class diagram

	Chapter 9. Kermeta Class TouchNavigator
	Chapter 10. Ecore Model Editor
	Chapter 11. Tip and tricks
	11.1. Texteditor keyboard shortcuts
	11.2. Texteditor tips
	11.2.1. Quickdiff

