
Kermeta Tutorial : Processes
to build a DSL

Reference manual

Haja Rambelontsalama

Abstract

This tutorial is a step-by-step user-guide to the process of building
a DSL using the Kermeta language.

Published Build date: 3-November-2010
Published

$LastChangedDate:: 2010-09-20 17:31:53#$

Preface. ... v

Chapter 1. Introduction .. 1

Chapter 2. Define abstract syntax ... 3

2.1. Terminology and format used in this tutorial ... 3

2.2. Define the metamodel .. 3

Chapter 3. Define the editor ... 5

3.1. Dynamic instance ... 5

3.2. Tree-view editor .. 5

3.3. Textual editor ... 6

3.4. GMF editor ... 6

Chapter 4. Model manipulation in Kermeta .. 7

4.1. Serialization ... 7

4.2. Package registry .. 7

Chapter 5. Contracts .. 9

Chapter 6. Behavior .. 10

Chapter 7. Model transformation - Compilation 11

Chapter 8. UI improvements .. 12

Chapter 9. Conclusion ... 13

iii

List of Figures

1.1. MDK overview. ... 2

iv

CHAPTER

Preface

Kermeta is a Domain Specific Language dedicated to metamodel engineering. It fills the gap let by MOF
which defines only the structure of meta-models, by adding a way to specify static semantic (similar to OCL)
and dynamic semantic (using operational semantic in the operation of the metamodel). Kermeta uses the ob-
ject-oriented paradigm like Java or Eiffel.

This document is an user-guide to create a DSL using the Kermeta language. This main document explain the
different processes to rapidly achieve this goal. For a direct acces to the how-to and the examples, please
refer to those presented in the FSM Tutorial and the Logo Tutorial. For the explanation of the concepts men-
tioned here, please refer to the Kermeta manual.

Important

Kermeta is an evolving software and despite that we put a lot of attention to this document, it may
contain errors (more likely in the code samples). If you find any error or have some information that
improves this document, please send it to us using the bug tracker in the forge: ht-
tp://gforge.inria.fr/tracker/?group_id=32 or using the developer mailing list
(kermeta-developers@lists.gforge.inria.fr) Last check: v1.4.1

Tip

The most update version of this document is available on line from http://www.kermeta.org .

v

http://gforge.inria.fr/tracker/?group_id=32
http://gforge.inria.fr/tracker/?group_id=32
http://www.kermeta.org/

CHAPTER 1

Introduction

This document is an user-guide to create a Domain Specific Language (DSL) using the Kermeta language.
This main document is a 10 minute-reading document and explains the different processes to rapidly achieve
this goal. Thanks to the implemented functionalities inside Kermeta language, we can easily manipulate mod-
els, weave an compose elements without altering the core of our model.

Important

We recommend to the beginner to read this document till the end first. Advanced user might directly
jump to the concrete examples : the FSM tutorial or the Logo Tutorial.

For the explanation of the concepts mentioned here, please refer to the Kermeta manual.

The main goal of this tutorial is to describe the main processes to provide Model Development Kit (MDK)
to your DSL.

The big picture of this tutorial is illustrated in the figure below:

1. starting from an ecore metamodel;

2. we will provide editor to create its instance-model;

3. we will add contracts (through aspect weaving with Kermeta) to manage constraints specified inside the
metamodel;

4. we will add some behavior (through aspect weaving with Kermeta) where you can bind with another
framework (provide GUI defined with another language - Java for example).

1

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/KerMeta-Manual/index.html

Figure 1.1. MDK overview

Introduction

2

EReferenceattributereference

CHAPTER 2

Define abstract syntax

2.1. Terminology and format used in this tutorial

1. meta-model / Ecore model: both terms are used to point to the meta-model level. “Ecore model” corres-
ponds to the Eclipse terminology for a meta-model specified in Ecore.

2. instance: in the context of this tutorial, the term “instance” is used to refer to an instance of a meta-model
i.e. of an Ecore model. Sometimes we will talk about instance-model (an Ecore model which is an in-
stance of the meta-model) so don't get confused.

3. model object / root class: in the scope of the EMF dynamic editor, these terms designate the model root
class that contains all other ones. This is usually a good practice to define a class which is the only one in
a model to have no container (i.e. which has no “black-diamonded” relation pointing to it).1

4. containment: this term designates an important property of classes associations. This property has to be
appropriately set2, in such a way that all the elements of an instance-model should be accessed from the
root class of the model, which is aimed at being the highest-level container.

2.2. Define the metamodel

The fisrt step is to focus on the concept of the language that you want to implement. These concepts define
the abstract syntax of the language. Usually, it is represented by an ecore metamodel which is the starting
point of this tutorial.

So first things first! Let's create the ecore file which is a class-diagram where a class represents a main
concept of the language. We won't forget to set up its nsURI. As a standard ecore file, any ecore aware tools
can be used to visualize it. To that extent, you can choose to generate/initialize its ecorediag file which con-
tains the graphical informations of the metamodel elements. Then, you can generate the model code provided
by EMF genmodel.

With Kermeta, you can also "program" your metamodel. Instead of designing it with its representation, you'll
textually define the concepts of your metamodel. By calling the generate ecore metamodel on your Kermeta
program source (.kmt), you obtain the ecore file.

Tip

3

If you want to learn more about how to create an ecore metamodel with eclipse, please refer to the
"How to create metamodel tutorial".

Note

An overview of an ecore diagram is available inside the examples below :

• section 3.2 "Create the FSM metamodel" inside the FSM tutorial

• section 3.1 "From Ecore to genenerated code" in Logo Tutorial

Define abstract syntax

4

http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/KerMeta-How-to-create-a-metamodel/index.html
http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html

CHAPTER 3

Define the editor

In this task, you will learn how to provide editors to manipulate instance-model which conforms to your
metamodel. There are many ways to do so. As these techniques are independant from each other, you can ex-
periment each of them according to your needs.

3.1. Dynamic instance

Before editing, you should create an instance-model with the dynamic instance. This is the most simple and
fastest way for creating an instance of a meta-model. Creation is accessible by right-clicking onto the root
meta-class. Because of the containment property, classes are only available for creation through this root
class.

Note

Illustrations of this technique can be seen in the dedicated part of the tutorials :

• section 4.1 "Dynamic instance" inside the FSM tutorial

• section 4.1 "Dynamic instance" in the Logo Tutorial

3.2. Tree-view editor

Then, the simplest tree view is a way to manipulate instance-model. Generally you can find it in the Outline
view. You can populate your model by right-clicking on an element, this triggers a popup menu where you
can choose to create child or sibling element.

Note

An illustration of create metamodel using tree view is available in :

• section 4.2 "Tree view editor" of FSM tutorial

• section 4.2 "Tree view editor" of Logo tutorial

5

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html
http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html

3.3. Textual editor

Textual editor allows you to "program" your instance-model. Instead of designing it with its representation,
you 'll textually define the concrete syntax of each concept of your metamodel. As a result, you'll get an in-
stance-model conforms to your metamodel. Many tools allow us to achieve this goal such as : Xtext, EMF-
Text, Sintax. Basically, these tools connect with the metamodel to define its concrete syntax and generate the
according code.

Note

If you want to have an example on this technique, please refer to the example in :

• section 4.3 "Textual editor" in Logo Tutorial

3.4. GMF editor

The last manipulation technique of a metamodel is to do so in a graphical way.

Note

A dedicated tutorial covers the process to define such kind of editor in :

• section 4.3 "Graphical editor" section in FSM tutorial.

Define the editor

6

http://www.xtext.org
http://www.emftext.org
http://www.emftext.org
http://www.kermeta.org/sintaks/
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html
http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html

CHAPTER 4

Model manipulation in Kermeta

This section illustrates some importants steps in order to succesfully manipulate the metamodel in Kermeta.
This is about why to register your metamodel and how to load/save it.

4.1. Serialization

Thanks to the persistence library, you can serialize (save and load) models. The persistence library is inspired
from the resource manager of EMF models. There is a repository (called EMFRepository) containing a set of
resources (the EMFResources). Each resource contains a reference called instance which contains all the root
classes of the loaded model (there is usually one root class). So, the procedure of creation of a resource that
will handle EMF models is the following :

1. Instanciate an EMFRepository;

2. Create a new EMF resource in this repository;

3. Load this resource;

4. Get the instances, i.e. the root class(es). All other instances can then be accessed by navigating the root
class(es) properties.

Note

FSM tutorial provide code example (section 5.3) to illustrate this model serialization in Kermeta

4.2. Package registry

In order to link the instance file with its meta-model, a relative path (nsURI) should be provided. So, after the
creation of the metamodel, we need to register this metamodel into the EMF Package Registry. In deployed
mode (ie. in a runtime workbench), the ecore is automatically registered by the plugin. In development mode,
you need to manually register it.

There is two ways to do that :

• deploying an EMF plugin which add permanently the meta model to the Eclipse's EMF Package Registry;

7

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html

• registering dynamically the meta model on it.

Note

Take look at the example below if you want to know how to register a matamodel :

• section 5.2 in FSM tutorial

Model manipulation in Kermeta

8

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html

CHAPTER 5

Contracts

Once we've defined the structure of your language, this next step will show how to add constraints specified
inside your language. Constraints on metamodels are static semantic. For instance you may add well formed-
ness rules (contracts) to control errors made by users.

Thanks to aspect weaving, Kermeta allows you to reopen ecore class definition in order to add pre/post con-
dition into it so as to satisfy the specified constraints. You only have to weave these pre/post-conditions (for
instace adding some invariants) and call the method checkAllInvariant() on the root element of the model to
check the contract.

Tip

These constraints can also be expressed in Object Constraint Language (OCL) which is the Ob-
ject Management Group (OMG) official language. You can import them merely by calling these
methods. Kermeta offer the same easy navigation inside existing model in OCL (<Collection>.each,
<Collection>.forAll, ...).

Note

Examples of how to add contract to your ecore model can be reached in the examples below :

• FSM tutorial : chapter 7 "Design by contract"

• "Add Contract", chapter 6 in Logo Tutorial.

9

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html

CHAPTER 6

Behavior

Like adding the contracts seen on the previous chapter, some dynamic semantics can be added to our
metamodel through Kermeta aspect weaving. According to the dynamic behave that we want to express, we
weave aspect operation inside each element of the metamodel where there is an action to express (i.e.: add
methods that represent the action that you want for that element).

To do so you have to define a virtual machine (VM) representing the application domain where you'are go-
ing to weave your methods.

If needed, you can implement a Kermeta wrapper to another language or library to add missing feature to
your VM (For example, you can call Java.lang.Math to perform calculation or Java AWT for drawing).

Note

A complete example is given inside :

• chapter 8 "Behavior" in FSM tutorial

• chapter 7 "Behavior" in Logo Tutorial

10

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html

CHAPTER 7

Model transformation -
Compilation

In this next part of the tutorial, we manage the transformation of the metamodel or its compilation to another
environement.

Through the same mechanism of aspect weaving provided in Kermeta, you map your language with another
environment through weaving "compilation".

Note

Code example on how to implement those weaving "compilation" are available at :

• chapter 9 "Model transformation" in FSM tutorial

• "Model transformation - Compilation", chapter 8 in Logo Tutorial

11

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html

CHAPTER 8

UI improvements

The final step is deploying the DSL environment inside an eclipse GUI. These improvements begin with an
appropriate UI for the DSL (editor, popupmenu, icon, wizard, ...). Then through the Plug-in Development
Environment (PDE) offered by eclipse, ui elements are added to interact with the interpreter of our DSL.

Note

An example on how to implement those ui tweaking is provided in the tutorial below :

• chapter 10 "UI improvements" in FSM tutorial

• "UI improvements", chapter 9 in Logo Tutorial

12

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html

CHAPTER 9

Conclusion

This is the end of this tutorial, we've covered the needed processes to build a Model Development Kit for a
DSL with Kermeta. Now, using Kermeta, you should be able to implement your own DSL language starting
from "just" an .ecore file (remember our first illustration) .

You may either move on to the full examples through the FSM tutorial and the Logo Tutorial in order to see
the implementation of these processes or either you may play it back to the begining.

13

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs//org.kermeta.kmlogo.logoasm.documentation/build/html.single/Kermeta-Tutorial-Logo/index.html

	Kermeta Tutorial : Processes to build a DSL
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Define abstract syntax
	2.1. Terminology and format used in this tutorial
	2.2. Define the metamodel

	Chapter 3. Define the editor
	3.1. Dynamic instance
	3.2. Tree-view editor
	3.3. Textual editor
	3.4. GMF editor

	Chapter 4. Model manipulation in Kermeta
	4.1. Serialization
	4.2. Package registry

	Chapter 5. Contracts
	Chapter 6. Behavior
	Chapter 7. Model transformation - Compilation
	Chapter 8. UI improvements
	Chapter 9. Conclusion

