
How to create an EMF model and use it in
Kermeta

Zoé Drey
Didier Vojtisek

Published Build date: 3-November-2010
$LastChangedDate:: 2010-06-02 10:42:20#$





Chapter 1. Introduction ................................................................................ 1

1.1. Required background ..................................................................................... 1

1.2. Terminology and format used in this tutorial ................................................. 1

1.3. Required environment .................................................................................... 2

Chapter 2. Create a meta-model for Kermeta programs ........................... 3

2.1. Editing a new meta-model with the EMF sample editor .................................. 3

2.2. Resulting meta-model .................................................................................... 9

2.3. EMF meta-model creation tips .......................................................................10

2.4. External documentation ................................................................................10

2.5. Alternative ways to create a meta-model .......................................................11

Chapter 3. Create an instance-model from a meta-model ...................... 13

3.1. With the dynamic instance creation tool .......................................................13

3.2. Using a reflexive editor .................................................................................13

3.2.1. Generate the editor .............................................................................. 13

3.2.2. Use the editor ...................................................................................... 14

Chapter 4. Manipulate instance-models with Kermeta ........................... 15

4.1. Preparing a Kermeta program .......................................................................15

4.1.1. The persistence library ......................................................................... 15

4.1.2. A first Kermeta program using persistence ............................................ 15

4.2. Load an EMF model with Kermeta .................................................................16

4.3. Modify and save an EMF model with Kermeta ...............................................16

4.4. Create a model in Kermeta, and save it as an EMF model .............................17

4.5. A template for a complete Kermeta program .................................................18

Chapter 5. Meta-model with behaviour and persistency ........................ 19

iii



List of Figures

2.1. Selection of the model object (root element) .......................................................... 4

2.2. Selection of the model object (root element) .......................................................... 5

2.3. New empty ecore model ......................................................................................... 6

2.4. How to show properties view ................................................................................. 6

2.5. New child on EPackage root node .......................................................................... 8

2.6. Setting the properties of an EReference ................................................................ 9

2.7. A simple FSM meta-model .....................................................................................10

2.8. Generate Ecore meta-model from Kermeta ...........................................................11

3.1. Create dynamic instance from an Ecore file ..........................................................13

4.1. Fsm_scratch_sample view ....................................................................................17

iv



CHAPTER 1

Introduction

This document is aimed at people who want either to use the Eclipse Modeling Framework in order to create
an EMF model, and/or to manipulate them using Kermeta. The use of EMF models in Kermeta is achieved
through the following steps, which some of them are optional (they are detailed sections):

1. creating a meta-model in Ecore format, following a few constraints that make its instances loadable by
Kermeta;

2. creating a model, also called an EMF model, as an instance of the above meta-model;

3. loading this model and manipulating it through a Kermeta program;

4. saving this model, as well as other ones programmatically created from scratch with Kermeta.

Kermeta is an evolving software and despite that we put a lot of attention to this document, it may con-
tain errors (more likely in the code samples). If you find any error or have some information that im-
proves this document, please send it to us using the bugtracker in the forge:ht-
tp://gforge.inria.fr/tracker/?group_id=32Last check: v0.1.0

Most of the code presented in this tutorial comes from the FSM sample available on the kermeta web site.
Have a try to it for a complete working sample!

1.1. Required background

1. Readers are supposed to be familiar to either the EMOF or the Ecore meta-model.

2. The use of Ecore also supposes readers to have a minimal knowledge, as end-users, of the Eclipse devel-
opment environment.

1.2. Terminology and format used in this tutorial

1. meta-model / Ecore model: both terms are used to point to the meta-model level. “Ecore model” corres-
ponds to the Eclipse terminology for a meta-model specified in Ecore.

2. instance: in the context of this tutorial, the term “instance” is used to refer to an instance of a meta-model,

1

http://gforge.inria.fr/tracker/?group_id=32
http://gforge.inria.fr/tracker/?group_id=32
http://www.kermeta.org/


i.e. of an Ecore model. Sometimes we will talk about instance-model (an Ecore model which is an in-
stance of the meta-model), so, don't get confused.

3. model object / root class: in the scope of the EMF dynamic editor, these terms designate the model root
class that contains all other ones. This root class is the only one in a model that has no container (i.e.
which has no “black-diamonded” relation pointing to it).

4. containment: this term designates an important property of classes attributes/references. This property has
to be appropriately set, in such a way that all the elements of an instance-model should be accessed from
the root class of the model, which is aimed at being the highest-level container (you will see that at the
10th step of section ???, p.???, and fig ).

1.3. Required environment

The required environment, whatever the underlying operating system, for handling EMF models and being
able to run the samples provided in this tutorial includes:

1. Java 1.5;

2. Eclipse, preferably the 3.1.1 version;

3. Ideally, Omondo, that provides a graphical editor of Ecore meta-models;

1. Kermeta plugin (remote site for a direct eclipse installation: http://www.kermeta.org/update ), ver-
sion 0.1.0;

2. EMF modeling framework, version 2.1.0 (remote site: Eclipse update site).

Required plugins can be found by using Eclipse installation tool, through the tool bar menu:Help >
Find and install > Search for new features to install > Next buttons

Introduction

2

http://www.kermeta.org/update


CHAPTER 2

Create a meta-model for Kermeta
programs

For simplicity sake, the different steps (meta-model, model creation, as well as model handling through
Kermeta) introduced in the scope of this tutorial are illustrated by means of the finite state machines
classical example.

2.1. Editing a new meta-model with the EMF sample editor

1. Create a new simple project (for instance MyFirstEMFSamples ).

2. Select in the tool bar menu (on top of Eclipse window)File > New > Other > Example EMF Creation
Wizards folder > Ecore Model

3



Figure 2.1. Selection of the model object (root element)

3.

Create a meta-model for Kermeta programs

4



Enter a name for the meta-model file (e.g. fsm.ecore), then click on Next button.

4. Choose EPackage as the Model Object (i.e. the root of the meta-model), and click on the Finish button.

Figure 2.2. Selection of the model object (root element)

Create a meta-model for Kermeta programs

5



5. If Omondo is installed, the meta-model can be edited by means of the Omondo graphical editor. However,
this tutorial focuses on the creation of meta-models using the Sample Ecore Editor. In case the Omondo
editor is set as the default editor, the sample Ecore editor can be opened (after having closed the Omondo
editor) by right-clicking onto the Ecore file and selecting Open with > Sample Ecore Editor.

6. If the Properties view is not visible at the bottom (or left, or right) part of the Eclipse window, open it us-
ing the tool bar menu.Window > Show View > Other > General folder > Properties;

7.

Figure 2.3. New empty ecore model

Figure 2.4. How to show properties view

8. Two properties of the created EPackage (which is initially displayed as null) have to be set through the
Properties tab:

1.

Create a meta-model for Kermeta programs

6



a. its Name: fsm, for example;

b. its Ns URI: the namespace URI of the Ecore model is mandatory to allow Kermeta being able to cor-
rectly load its potential instances, as well as for the Dynamic creation of instances tool (see section 3.1
p.11). It is strongly recommended to set an absolute Eclipse URI (this kind of URI is actually relative
to your Eclipse project), e.g. platform:/resource/MyFirstEMFSamples/metamodels/fsm.ecore

3. At this stage, it is now possible to add children to the created root (which is fsm EPackage in the con-
sidered example). This could be achieved by right-clicking on the class and choosing the New child item.
In the scope of the FSM example, three classes are added, one of them (the class Fsm) being considered as
the “root class” (this should not be not mandatory, but allows a better EMF working):

Create a meta-model for Kermeta programs

7



Figure 2.5. New child on EPackage root node

1.
a. a Fsm class, for which the Name attribute (in the properties view) has to be set (other properties do not

need to be considered at this stage);

b. a Transition class (idem as for the Fsm class);

c. a State class (idem as for previous classes).

4. Adding operations, attributes, or references to the newly created classes is achieved in the same way
classes have been added to the root EPackage, i.e. using New child on each created element.

5. Still through the Properties tab, the EContainment property will have to be set to true for each reference
which intended to contain instances. In the scope of the automaton example, the transition and state refer-
ences of the Fsm class are defined as containment reference. By this mean, it will be possible to create, in
an EMF model of it, a collection of transitions and states. Refer to the EMF model creation step (section 3,
p.11) for further details.

Create a meta-model for Kermeta programs

8



Figure 2.6. Setting the properties of an EReference

6. Setting properties, such as the upper and lower bounds, the type (EType), of the attributes, operations, and
references is achieved through the Properties view. The main properties to consider are: ESuperType,
EType, Name, Upper Bound, Lower Bound, Containment (for the diamond-ed associations), Ordered,
Unique, and EOpposite (opposite property). For simplicity purpose, other properties can be ignored in the
scope of this tutorial.

Lower and upper bound properties: 0, 1, -1 (stands for *) are allowed.

7. Do not forget to save the created meta-model.

2.2. Resulting meta-model

Create a meta-model for Kermeta programs

9



At this stage of the tutorial, the designed meta-model should look like the following meta-model:

Figure 2.7. A simple FSM meta-model

2.3. EMF meta-model creation tips

Creating a good meta-model is sometime difficult due to limitations of the used tools. For a better experience
in using EMF tools and Kermeta, it is advised to respect the following rules:

1. Create an element that will contain directly or indirectly all the other elements. The reflexive editor and
the editor generated by EMF allow to create only one root element and then, from this element, create
contained elements.

This problem occurs only for model element creation from the editors. The editors correctly display mod-
els from meta-models that do not follow this rule if you are able to create such models by another mean.
Kermeta is not affected by this constraint.

2.4. External documentation

Additional documentation on EMF can be found at the following links:

1. www.eclipsecon.org/2005/presentations/EclipseCon2005_Tutorial28.pdf

2. http://dev.eclipse.org/viewcvs/indextools.cgi/emf-home/Attic/faq.html?rev=1.3

3. http://eclipse.org/emf/docs.php?doc=docs/tutorials/1.1/xlibmod/xlibmod_emf1.1.html

Create a meta-model for Kermeta programs

10

http://dev.eclipse.org/viewcvs/indextools.cgi/emf-home/Attic/faq.html?rev=1.3
http://eclipse.org/emf/docs.php?doc=docs/tutorials/1.1/xlibmod/xlibmod_emf1.1.html


1. http://www.eclipse.org/articles/Article-Using%20EMF/using-emf.html

More generally, most of EMF documentation can be found onto the Eclipse website.

2.5. Alternative ways to create a meta-model

EMF tools are not the only way to create Ecore meta-models. Any tool that can manipulate Ecore can
do the same. Here is a small list of tools that can be used to create your meta-model:

1. Omondo / Eclipse UML has a nice graphical editor for Ecore models. It even enables to directly gen-
erate the EMF editor from this tool.

2. Kermeta allows users to specify meta-models by means of the Kermeta syntax and then translate
them into Ecore using the Kermeta2Ecore function.

Figure 2.8. Generate Ecore meta-model from Kermeta

The Ecore import/export function and the Omondo editor can be used in order to graphically display the Ker-

Create a meta-model for Kermeta programs

11

http://www.eclipse.org/articles/Article-Using%20EMF/using-emf.html


meta classes of a model. It will act as a basic manual roundtrip editor.

Create a meta-model for Kermeta programs

12



CHAPTER 3

Create an instance-model from a
meta-model

3.1. With the dynamic instance creation tool

This is the most simple way for creating an instance of a meta-model. Creation is accessible by right-clicking
onto the root class/model object of the meta-model (in the scope of the FSM example, it is the Fsm class).
Because of the containment property, classes are only available for creation through this root class.

Figure 3.1. Create dynamic instance from an Ecore file

3.2. Using a reflexive editor

Since it allows to customize the generated editor to match meta-model specificities. (see the end of this art-
icle: http://www.eclipse.org/articles/Article-Using%20EMF/using-emf.html), this solution should be fa-
voured for meta-models that are relatively stable.

3.2.1. Generate the editor

This is the most ergonomic – but longest – way to create an instance of a meta-model. This method is here

13

http://www.eclipse.org/articles/Article-Using%20EMF/using-emf.html


presented in its main lines:

1. Once the meta-model is created, it is possible to create a model for model generation, called genmodel:

1.
a. File > New > Other > Eclipse Modeling Framework folder > EMF Models;

b. Choose a name for your genmodel (fsm.genmodel is ok);

c. Select Load from an EMF core model button, and find the meta-model file (fsm.ecore);

d. Select the unique package fsm.

5. In order to avoid weird behaviour (particularly if the current project was not set as a “Java project”) the
model directory of the genmodel needs to be changed in the Properties tab of the genmodel. For this pur-
pose, change the property called Model Directory (in the Model folder), to /My-
FirstEMFSamples.model/src, so that the EMF source code is generated in a new empty project that will
exclusively contain this source code.

6. Right-click on the root node of the fsm.genmodel, and choose the Generate all item.

3.2.2. Use the editor

1. To be able to use the generated reflexive editor, a new runtime workbench has to be launched through the
tool bar menu:

1.
a. Run > Run As > Run-time Workbench (in Eclipse 3.0.2);

b. or Run > Run... > Eclipse application item in the right part > New button > Apply button > Run
button at the bottom (Eclipse 3.1).

c. or Run > Open Run Dialog... > Eclipse application item in the left part > New button > Apply but-
ton > Run button at the bottom (Eclipse 3.3).

4. Once the new eclipse application is launched, create a new simple project (e.g. called MyFirstEMFIn-
stances), and select File > New > Other > Example EMF Creation Wizards folder > Fsm Model;

5. Creation of an EMF model follows the same principles that the creation of an Ecore model. Please refer to
the meta-model creation steps, section ???, p.???. Note that the model object, which was EPackage in the
meta-model creation, becomes Fsm in the EMF model creation;

6. As you work in another Eclipse environment, you will probably want to copy the models that you created
this way in your initial project (the one named MyFirstEMFSamples). Simply do it.

Create an instance-model from a meta-
model

14



CHAPTER 4

Manipulate instance-models with
Kermeta

Loading a first Kermeta program can be achieved by just copying the code provided in the following sec-
tions, following carefully the suggested instructions. Readers who want to directly load their own models
should directly go to the section 4.5, p.15 and copy the given template.

4.1. Preparing a Kermeta program

4.1.1. The persistence library

The persistence library is inspired from the resource manager of EMF models. There is a repository (called
EMFRepository), that is aimed at containing a set of resources (the EMFResources). Each resource contains a
reference called instances, that contains all the root classes of the loaded model (there is usually only have
one root class). So, the procedure of creation of a resource that will handle EMF models is the following
(code example is provided in next sections):

1. Instanciate an EMFRepository;

2. Create a new EMF resource in this repository;

3. Load this resource;

4. Get the instances, i.e. the root class(es). All other instances can then be accessed by navigating the root
class(es) properties.

4.1.2. A first Kermeta program using persistence

As a reminder, here is the common skeleton of a Kermeta program, inside which can must be added any lib-
rary that is necessary to load and save the FSM samples.

@mainClass "fsm_package::Main"
@mainOperation "main"

package fsm_package;

require kermeta
require "../metamodels/fsm.ecore"

15



using kermeta::persistence // <- used to load and save EMF models.
using kermeta::standard

class Main
{

operation main() : Void is do
// TODO: implement 'main' operation

end
}

4.2. Load an EMF model with Kermeta

The following code sample load a previously created FSM model:

operation main() : Void is do
// Input fsm
var fsm1 : fsm::Fsm
// Create the repository, then the resource
var repository : EMFRepository init EMFRepository.new
var resource : EMFResource
resource ?= repository.createResource("../models/Fsm_dyn_sample1.xmi", "../metamodels/fsm.ecore")
resource.load

// Load the fsm (we get the instance)
fsm1 ?= resource.instances.one
// Check that the fsm was correctly loaded
fsm1.state.each { s | stdio.writeln("-> "+s.name) }
fsm1.transition.each { t | stdio.writeln( t.source.name+ " -- " +t.target.name ) }
end

4.3. Modify and save an EMF model with Kermeta

At this stage, it should be interesting to be able to modify a previously loaded model using Kermeta before
saving it. The procedure is very simple: do your manipulation as if your loaded FSM model is a Kermeta
model (which is, in effect, the case!), and then, simply call a save method on the handling resource. For this
purpose, the following code can be added at the end of the main operation defined in the above section:

var newstate : fsm::State init fsm::State.new
newstate.name := "s_new"fsm1.state.add(newstate)
// save fsm1
resource.save()

It is also possible to save the modified model in a new file instead of overwriting the initial one by using the
saveWithNewURI() method. To this end, just replace the last line of above code (resource.save())
by the following one:

resource.saveWithNewURI("../models/modified_dyn_sample1.xmi")

4.4. Create a model in Kermeta, and save it as an EMF mod-

Manipulate instance-models with Kermeta

16



el

Saving a programmatically generated model requires to use a new specific instruction that addq the created
Fsm root class to the destination resource. The following code chunk creates a simple EMF model with 2
states (named “foo”, and “bar”), and 2 transitions. Saving it then consists in adding the root class (i.e. the
model object) stored in the variable fsm2 into the resource instances.

var another_resource : EMFResource
another_resource ?= repository.createResource(

"../models/Fsm_scratch_sample.xmi",
"../metamodels/fsm.ecore")

var fsm2 : fsm::Fsm init fsm::Fsm.new
var s0 : fsm::State init fsm::State.new
var s1 : fsm::State init fsm::State.new
var t01 : fsm::Transition init fsm::Transition.new
var t11 : fsm::Transition init fsm::Transition.new
s0.name := "foo"
s1.name := "bar"
t01.source := s0
t01.target := s1
t11.source := s1
t11.target := s1
fsm2.state.add(s0)
fsm2.state.add(s1)
fsm2.transition.add(t01)
fsm2.transition.add(t11)
// save the from-scratch model!
another_resource.instances.add(fsm2)
another_resource.save()

This program should return the following FSM model (viewed with the reflexive editor):

Figure 4.1. Fsm_scratch_sample view

Manipulate instance-models with Kermeta

17



4.5. A template for a complete Kermeta program

The following short code sample provides a comprehensive code template (replace the <words>) for model
loading. Note here that the term model object is appropriate (better than root class!): loading a model consists
in getting the root class, from which, thanks to the containment property (see section 1.2, p.2), all the con-
tained instances can be accessed.

@mainClass "fsm_package::Main"
@mainOperation "main"
package fsm_package;
require kermeta
require "<relative_path_of_the_metamodel>" // NOTE : same as param of createResource

using kermeta::persistence
using kermeta::standard
class Main
{
operation main() : Void is do

// Variable for your input EMF model
var <my_model_object> : <type_of_my_model>
// Create the repository, then the resource
var <my_rep> : EMFRepository init EMFRepository.new
var <my_resource> : EMFResource
<my_resource> ?= repository.createResource(
"<relative_path_of_my_model_to_load>",
"<relative_path_of_the_metamodel>")
<my_resource>.load
// Load the emf model - get the root class
<my_model_object> ?= resource.instances.one
// You can now browse your model through its attributes/references
<my_model_object>.<an_attribute_of_it>.each { o |

stdio.writeln("-> "+o.toString) } )
// Save your model in another file
<my_resource>.saveWithNewUri("<relative_path_of_a_file_where_to_save_model>")

end
}

Manipulate instance-models with Kermeta

18



CHAPTER 5

Meta-model with behaviour and
persistency

Kermeta makes it possible to add behaviour to a meta-model. Developers may therefore be interested in load-
ing models that conform to such a meta-model. The following section explains one of the simplest way to
achieve this goal. This is a very small variation on the code presented in the previous sections.

At current stage, this is based on Kermeta ability to “require” class definition written in several formats. Cur-
rently (version v0.0.16) supported formats are:

1. kmt files (Kermeta textual syntax);

2. km files (Kermeta model in XMI 2.0);

3. Ecore files (Ecore model in XMI 2.0);

4. emfatic files (Ecore textual syntax developed by IBM).

The transformations Kermeta2Ecore and Ecore2Kermeta enables to obtain two versions of a same meta-
model, one in Ecore, the other in Kermeta. From a structural point of view, they will be equivalent and com-
patible in Kermeta.

Then, these two syntaxes are structurally equivalent.

require "fsm.kmt" // if you use this one, you'll have the FSM behavior

is equivalent to

require "fsm.ecore" // if you use this one, you won't be able to use the FSM behavior

If you have generated the Ecore from a kmt that defines a behaviour, this Ecore will also contain the spe-
cified behaviour.

Model loading and saving must be achieved using the Ecore version, so that EMF will know how to serialize/
deserialize the models.

var my_resource : EMFResource init repository.createResource( "./my_fsm_usermodel.fsm", "./fsm.ecore")

The Kermeta version of the meta-model will be used to specify the behaviour, the Ecore version will be used
by EMF for the persistency aspects.

19



Note

Kermeta2Ecore and Ecore2Kermeta transformations are available in the workbench by respectively
right-clicking onto a Kermeta or an Ecore file).

Meta-model with behaviour and persist-
ency

20


	
	Table of Contents
	Chapter 1. Introduction
	1.1. Required background
	1.2. Terminology and format used in this tutorial
	1.3. Required environment

	Chapter 2. Create a meta-model for Kermeta programs
	2.1. Editing a new meta-model with the EMF sample editor
	2.2.  Resulting meta-model
	2.3. EMF meta-model creation tips
	2.4.  External documentation
	2.5.  Alternative ways to create a meta-model

	Chapter 3. Create an instance-model from a meta-model
	3.1. With the dynamic instance creation tool
	3.2. Using a reflexive editor
	3.2.1. Generate the editor
	3.2.2. Use the editor


	Chapter 4. Manipulate instance-models with Kermeta
	4.1. Preparing a Kermeta program
	4.1.1. The persistence library
	4.1.2. A first Kermeta program using persistence

	4.2. Load an EMF model with Kermeta
	4.3. Modify and save an EMF model with Kermeta
	4.4. Create a model in Kermeta, and save it as an EMF model
	4.5. A template for a complete Kermeta program

	Chapter 5. Meta-model with behaviour and persistency

