
Tutorial : Building a DSL using
Kermeta

Logo sample

Haja Rambelontsalama

Abstract

This tutorial is a step-by-step user-guide to build integrated tools
with the Kermeta language. The illustrated example here is build-
ing the Logo DSL with Kermeta.

Published Build date: 3-November-2010
Revision: $Date:: 2010-03-05 11:10:01#$

Preface. ...vi

Chapter 1. Introduction .. 1

Chapter 2. Installation .. 2

2.1. Prerequisites .. 2

2.2. Install logo projects .. 2

Chapter 3. Define the metamodel .. 4

3.1. From Ecore to genenerated code ... 4

3.2. Metamodel Ecore with Kermeta .. 7

Chapter 4. Editor ... 11

4.1. Dynamic instance ..11

4.2. Tree view editor ...12

4.3. Textual editor ..14

4.4. GMF editor ..14

Chapter 5. Model manipulation in Kermeta .. 15

5.1. Package registry ...15

5.2. Serialization ..15

Chapter 6. Contract .. 16

6.1. Static semantics ..16

6.2. Implementation in Kermeta ...16

Chapter 7. Behaviour ... 19

7.1. Preparation of the environment ...19

7.2. Dynamic semantic ...20

7.3. Virtual machine ...22

7.4. Operational semantics extra ...23

7.4.1. Call to java.lang.Math .. 23

7.4.2. Implementing a graphical output ... 24

iii

Chapter 8. Model transformation - Compilation 27

Chapter 9. UI improvements .. 28

9.1. GUI deployment setup ...28

Chapter 10. Using the deployed DSL environment 32

Chapter 11. Conclusion ... 34

Tutorial : Building a DSL using Kermeta

iv

List of Figures

2.1. Installation of the Kermeta Tutorial projects .. 3

3.1. Project structure after generating the model, edit and editor code 6

3.2. The logo metamodel ... 7

4.1. Creating a dynamic instance (illustration purpose) ...12

4.2. dots.xmi illustration ..13

6.1. Kermeta application checkModels output ...18

7.1. org.kermeta.kmlogo.logoasm.srcKermeta project structure20

7.2. Outline view ..22

7.3. Call to java Math results .. 24

7.4. VM testing output ... 25

11.1. Logo solution project structure. .. 34

v

CHAPTER

Preface

Kermeta is a Domain Specific Language dedicated to metamodel engineering. It fills the gap let by MOF
which defines only the structure of meta-models, by adding a way to specify static semantic (similar to OCL)
and dynamic semantic (using operational semantic in the operation of the metamodel). Kermeta uses the ob-
ject-oriented paradigm like Java or Eiffel.

Important

Kermeta is an evolving software and despite that we put a lot of attention to this document, it may
contain errors (more likely in the code samples). If you find any error or have some information that
improves this document, please send it to us using the bug tracker in the forge: ht-
tp://gforge.inria.fr/tracker/?group_id=32 or using the developer mailing list
(kermeta-developers@lists.gforge.inria.fr) Last check: v1.2.0.

Tip

The most update version of this document is available on line from http://www.kermeta.org .

vi

http://gforge.inria.fr/tracker/?group_id=32
http://gforge.inria.fr/tracker/?group_id=32
http://www.kermeta.org/

CHAPTER 1

Introduction

The Logo language is a small programming language to manage a pen-drawer turtle. Wherever the turtle
goes, it draw lines to form figures. Logo was initially dedicated to introduce programming concepts to chil-
dren.You can find more information about logo language on the wikipedia page (external link).

This tutorial will guide you from the installation of the necessary files to the analysis of the different part of
the code so as to build a programming environnement for the Logo.

Note

We recommend that you firstly read the 10min-reading Building DSL main process tutorial in or-
der to get the "bird's eye view" (see Introduction) of what we are going to build here and to have
an overview of the methodology to follow.

1

http://fr.wikipedia.org/wiki/Logo_(langage)
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/Kermeta-Tutorial-Process/index.html

CHAPTER 2

Installation

In this task you'll learn how to install the predefined logo environment, install the predefined logo project for
the tutorial.

This tutorial was set up with Eclipse 3.5.1, Kermeta 1.3.2, EMFText 1.2.3

(Update : this tutorial was updated using Eclipse 3.6.1, Kermeta 1.4.1, EMFtext 1.3.2)

2.1. Prerequisites

Below is the list of the things that you need to ensure beforehand :

• You should install an eclipse environment with Kermeta (1.3.3 and above). Further information on how to
install Kermeta and the Kermeta language;

• You should be familiar with ecore metamodel;

• You should be familiar with eclipse modelling environment.

• You should have notion of aspect oriented programming (AOP).

2.2. Install logo projects

Once you have an Eclipse modelling with Kermeta, get the tutorial projects by selecting File -> New -> Ex-
ample... -> Kermeta Samples -> Logo tutorial - base resources.

At this point, you shoud have one project inside your workspace as illustrated in the figure below :

• a project named : org.kermeta.kmlogo.logoasm.tutorial with a readme and a folder "parts".Inside the
folder "parts" are the folders corresponding to each section of this tutorial and containing the needed ma-
terial for each step.

2

http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/KerMeta-How-to-install-KerMeta/index.html
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/KerMeta-How-to-install-KerMeta/index.html
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/KerMeta-Manual/index.html

Figure 2.1. Installation of the Kermeta Tutorial projects

Note

If you want to skip this step by step tutorial and directly jump to the whole soluce code, it is already
deployed into the Kermeta Eclipse. Please read the conclusion to see how to.

Installation

3

CHAPTER 3

Define the metamodel

The first step of this tutorial is to define the abstract syntax. To do so, we have to define the main concepts.
For the logo language, these concepts are the instructions to be executed : pen up, pen down, go forward, ro-
tate left ...

Tip

If you want to learn more about how to create an ecore metamodel with eclipse, please follow the
how-to in the next sections or refer to the other available tutorial

3.1. From Ecore to genenerated code

In order to define the metamodel, we are going to process as shown in the following steps : create an ecore
file, set up its nsURI and create its corresponding generator model (.genmodel). Then, we are going to set up
the needed informations (base package, model directory, file extension, plugin ID,...) :

1. Inside the project org.kermeta.kmlogo.logoasm.tutorial, open ther folder parts/1.metamodel and
open the file ASMLogo.ecore which is the metamodel of your language (here logo) and look at its con-
tent. In this ecore file you'll notice the various instructions supported by the DSL that we are going to
build. Some are primitives, for example : Back, Forward, Left, PenUp, ... Some are expressions, for ex-
ample : Plus, Minus, ... And some are control structures, for example : If, while, Repeat, ...

2. If not already set in the property view, do not forget to set the properties of our metamodel like in this
example :

1. Inside the file ASMLogo.ecore;

2. Select kmLogo package, right-click on it and choose show properties view;

3. Set the ns URI to "http://www.kermeta.org/kmLogo" and save it;

Example 3.1. Set up nsURI

3. Then, we need to create the generator model for this ecore. For those who are familiar with creating a
genmodel, we've provided a completed one inside the folder parts/1.metamodel (see the file
ASMLogo.genmodel) so that you can rapidly jump to the next step. For the begginers, below is a step

4

http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/KerMeta-How-to-create-a-metamodel/index.html

by step guide to create one.

create an EMF Generator Model (File > New..) and name it ASMLogo.genmodel, hit next and chosse
Ecore model as model importers, hit next and import the previous metamodel (Browse workspace >
org.kermeta.kmlogo.logoasm.tutorial/1.metamodel), load it, hit next and finish. In the example below,
you can set up the properties for code generation, if needed you can manually tweak them but normally
you should leave them as they are auto-generated (you should result in a file with the same inforamtions
as the provided ASMLogo.genmodel).

1. Open the file ASMLogo.genmodel;

2. Unfold the root element ASMLogo and select the kmLogo package;

3. Right-click on it and choose show properties View (if not already open), set the base package
(unfold All in property view) property to : org.kermeta.kmlogo.logoasm.model;

4. For the ASM package (unfold kmLogo package) set its File Extension (unfold Model in the prop-
erty view) property to "logoasm";

5. Right-click on the root element ASMLogo and choose show properties View (if not already open);

6. In the property view, unfold Model:

• Set "Model Directory" to /org.kermeta.kmlogo.logoasm.model/src

• Set "Model Plug-in ID" to org.kermeta.kmlogo.logoasm.model

7. In the property view, unfold Edit:

• Set "Edit Directory" to /org.kermeta.kmlogo.logoasm.edit/src

• Set "Edit Plug-in Class" to
org.kermeta.kmlogo.logoasm.kmLogo.provider.ASMLogoEditPlugin

• Set "Edit plug-in ID" to org.kermeta.kmlogo.logoasm.edit

8. In the property view, unfold Editor:

• Set "Editor Directory" to /org.kermeta.kmlogo.logoasm.editor/src

• Set "Editor Plug-in Class" to
org.kermeta.kmlogo.logoasm.kmLogo.presentation.ASMLogoEditorPlugin

• Set "Editor plug-in ID" to org.kermeta.kmlogo.logoasm.editor

Example 3.2. Manually set properties of a .genmodel

4. If you have manually set up the properties, do not forget to save your generator model. Let's directly
generate the associated code for our metamodel. Remember the main concepts of our DSL that we've
mentioned before, this is step is mandatory as it gives a first implementation of our DSL with EMF :

Inside the ASMLogo.genmodel, right-click on kmLogo package and choose Generate Model Code.
This will add a new project org.kermeta.kmlogo.logoasm.model to your structure.

Define the metamodel

5

Repeat the step above and choose Generate Edit code. This will add a new project
org.kermeta.kmlogo.logoasm.model.edit to your structure.

Repeat again and choose Generate Editor Code. This will add the project
org.kermeta.kmlogo.logoasm.model.editor.

Copy the files ASMLogo.ecore and ASMLogo.genmodel inside a folder
org.kermeta.kmlogo.logoasm.model/model in order to be coherent with the plugin intention (store the
model and the model code)

You should now have a project structure as illustrated below :

Figure 3.1. Project structure after generating the model, edit and editor code

5. To have an overview of our DSL, go back to the file
org.kermeta.kmlogo.logoasm.model/model/ASMLogo.ecore:

Right-click on it and initialize the ecore diagram file.

Name it ASMLogo.ecorediag, hit next and choose ASM package as a root element and finish to see the
graphical representation of your metamodel (if you choose kmLogo as a root element then you will have
to double-click on Package ASM to open it and then Create button from the window wizard).

You should obtain an overview of all the concepts in your metamodel (see the figure below -it may dif-
fer from actual version but is here for illustration purpose).

Define the metamodel

6

Figure 3.2. The logo metamodel

Important

Before going further in this tutorial, do not forget (if not already done) :

• To set up the nsURI of the model/ASMLogo.ecore file;

• To register this ecore model (In deployed mode (ie. in a runtime workbench), the ecore is auto-
matically registered by the plugin, in development mode, you need to manually register it).

3.2. Metamodel Ecore with Kermeta

Many ecore tools allow you to create your metamodel. Kermeta allows you to do it in a "programmatical"
way. Analyse the content of the listing below and see what does it stand for :

@uri "http://www.kermeta.org/kmLogo"
package kmLogo;

require "kermeta"

Define the metamodel

7

alias Integer : kermeta::standard::Integer;
alias Boolean : kermeta::standard::Boolean;
alias String : kermeta::standard::String;
package ASM
{

abstract class Instruction
{
}
abstract class Primitive inherits Instruction
{
}
class Back inherits Primitive
{

attribute steps : Expression[1..1]

}
class Forward inherits Primitive
{

attribute steps : Expression[1..1]

}
class Left inherits Primitive
{

attribute angle : Expression

}
class Right inherits Primitive
{

attribute angle : Expression

}
class PenDown inherits Primitive
{
}
class PenUp inherits Primitive
{
}
class Clear inherits Primitive
{
}
abstract class Expression inherits Instruction
{
}
abstract class BinaryExp inherits Expression
{

attribute lhs : Expression[1..1]

attribute rhs : Expression[1..1]

}
class Constant inherits Expression
{

attribute integerValue : Integer

}
class ProcCall inherits Expression
{

attribute actualArgs : Expression[0..*]

reference declaration : ProcDeclaration[1..1]#procCall

}
class ProcDeclaration inherits Instruction
{

attribute name : String

attribute args : Parameter[0..*]

attribute block : Block

reference procCall : ProcCall[0..*]#declaration

Define the metamodel

8

}
class Block inherits Instruction
{

attribute instructions : Instruction[0..*]

}
class If inherits ControlStructure
{

attribute thenPart : Block[1..1]

attribute elsePart : Block

}
class ControlStructure inherits Instruction
{

attribute condition : Expression

}
class Repeat inherits ControlStructure
{

attribute block : Block[1..1]

}
class While inherits ControlStructure
{

attribute block : Block[1..1]

}
class Parameter
{

attribute name : String

}
class ParameterCall inherits Expression
{

reference parameter : Parameter[1..1]

}
class Plus inherits BinaryExp
{
}
class Minus inherits BinaryExp
{
}
class Mult inherits BinaryExp
{
}
class Div inherits BinaryExp
{
}
class Equals inherits BinaryExp
{
}
class Greater inherits BinaryExp
{
}
class Lower inherits BinaryExp
{
}
class LogoProgram
{

attribute instructions : Instruction[0..*]

}
}

Inside org.kermeta.kmlogo.logoasm.model/model, create a new folder srcKermeta.

Define the metamodel

9

Inside this newly created folder, create a new Kermeta file (.kmt) and type the listing above inside (to save
time, after analysing the listing above, you may copy/paste to replace the generated code).

After saving, right-click on it and choose Kermeta > Generate Ecore.

You should retrieve our logo language's .ecore representation that we 've just seen before. Congratulation
you've just "written" your first kermeta program of this tutorial, and you have define the famous main con-
cepts of your DSL!

Define the metamodel

10

CHAPTER 4

Editor

In this task, you will learn how to provide editors to your DSL in order to manipulate model instances con-
form to your DSL's metamodel. There are many ways to do so and as these techniques are independant from
each other, you can experiment each of them according to your needs. However in this tutorial we will focus
more on the textual editor. Advanced users (i.e.: those familiar with creating .xmi files from scratch) can dir-
ectly jump to the texteditor generation section using dedicated framework.

4.1. Dynamic instance

Before all, let's create our first model instance with the dynamic instance :

1. Open the file ASMLogo.ecorediag inside the folder org.kermeta.kmlogo.logoasm.model/model.

2. Go to the outline view. Select the top level element inside your metamodel (for example here the Logo-
Program as it is the entry point).

3. Right-click on this element and choose Create a dynamic instance.

11

Figure 4.1. Creating a dynamic instance (illustration purpose)

Name your dynamic model "dots.xmi" and hit finish.

4.2. Tree view editor

Using the tree-view editor is a way to manipulate model instances. Once you open the created ".xmi" file
with the "Sample Reflective Ecore Model Editor" then you can add childs or sibling for the element to con-
struct you model instance. At the end, you can obtain a model conform to the logo language in xmi format.

If you want to learn more, follow the complete example below or check out the other available examples

1. Right-click on the file "dots.xmi" and choose "open with .. > Sample Reflective Ecore Model Editor".

2. In the editor, unfold "...dots.xmi" and right-click on Block element. Choose New child > Instructions
Right to position the turtle.

3. Then, right-click on "Instruction Right" and choose New child > Angle Constant to define the angle of
the rotation. Select the element "Constant" and in the properties view (right clic show property view), set

Editor

12

http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/Kermeta-Tutorial-Process/index.html#sec_tree_view_edior

the Intetger Value to 90.

4. We set the fisrt instruction. In the editor, right-click and choose Validate to check wether your model in-
stance newly created is conform to the defined metamodel.

5. Then you can keep on building your model instance : Right-click on "Right" element, choose New Sibling
> Instructions penDown to tell the turtle to be "ready to write".

6. After that, Right-click on "PenDown" and choose New Sibling > Instructions Forward then like we did
before, create the steps Constant child and set the value to 10. That tell the turtle to "draw" the line on 10
of the given metric (pixel).

7. Repeat above steps to complete your model instance like the illustration below and do not forget to Valid-
ate to check conformance from time to time.

Example 4.1. Creation of the dots.xmi

Figure 4.2. dots.xmi illustration

You have just finished creating your first model instance, save it and keep an eye on it as we are going to re-
use it later in this tutorial.

Editor

13

4.3. Textual editor

A textual editor is also available in order to create a model instance conform to our metamodel and can be
processed by the interpreter. In this example we will use EMFText (external link) to generate the concrete
syntax of our metamodel.

Follow these steps to set up the concrete syntax of your language and its associated textual editor :

1. Create a java project and name it : org.kermeta.kmlogo.logoasm.emftexteditor. Create a folder con-
crete_syntax inside.

2. Back to the project org.kermeta.kmlogo.logoasm.tutorial, open the folder
1.metamodel/concrete_syntax.

3. Copy and paste the file ASMLogo.cs into the newly created folder
org.kermeta.kmlogo.logoasm.emftexteditor/concrete_syntax/.

Right-clic on the file ASMLogo.cs and choose "Open With ..." > "EMFText cs editor". Analyse its con-
tent : it follows the structure of .cs file as described in the emftext CS language reference (external link).

Here, we defined the file extension of our DSL (logo), link it to our metamodel (through the nsUri) and
define the style and the concrete rules for each meta-class concept that we want to map.

Tip

If you meet with some errors, be sure to register your ecore and ensure that the path to your gen-
model is correct.

4.
Right-click on ASMLogo.cs file and choose generate Text Ressource.

This would add two project in your project structure : org.emftext.commons.antlr3_1_1 and
org.kermeta.kmlogo.logoasm.model.kmLogo.resource.logo.

(Update : Since EMFtext 1.3, this would add three projects in your project structure :
org.emftext.commons.antlr3_2_0, org.kermeta.kmlogo.logoasm.model.kmLogo.resource.logo (core
resource for texteditor) and org.kermeta.kmlogo.logoasm.model.kmLogo.resource.logo.ui (eclipse ui
interraction).)

You have just generated the code for your text editor in "src" and "src-gen" of each project. Keep going
through this tutorial to test it inside a real interpreter.

4.4. GMF editor

The graphical way to manipulate your metamodel can be done with the GMF editor.

For further information, please refer to the FSM tutorial on how to graphically edit your metamodel.

Editor

14

http://www.emftext.org
http://www.emftext.org/index.php/EMFText_CS_Language_Reference
http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html

CHAPTER 5

Model manipulation in Kermeta

These are few steps on how to manipulate metamodel in Kermeta. This is about why to register your
metamodel and how to load/save it. We invite the reader to check inside the Building DSL main process tu-
torial (See Building DSL with kermeta tutorials) for the explanation of these model manipulations.

5.1. Package registry

An example is fully covered in section 5.2 of FSM tutorial, for further explanation of this step please refer to
the section 4.2 of process tutorial

5.2. Serialization

The section 5.1 of FSM tutorial provides a complete example for this section, explanation can be found in-
side the section 4.1 of process tutorial

15

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/Kermeta-Tutorial-Process/index.html
http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/Kermeta-Tutorial-Process/index.html

CHAPTER 6

Contract

Let's now add some static semantic to our metamodel i.e. add missing pre/post-conditions to our .ecore in
order to express the contraints specified in the metamodel. From now on, we are going to learn how to weave
aspects with Kermeta.

6.1. Static semantics

For this step we are going to add two contracts to our metamodel:

• "no two formal parameters of a procedure may have the same name";

• "each procedure call provide the same number of arguments as specified in its declaration".

In OCL you will have the listing below to express it (you can find the corresponding OCL file inside
org.kermeta.kmlogo.logoasm.tutorial/parts/2.constracts) :

package kmLogo::ASM

context ProcCall
inv apropriate_number_of_actual_parameters :

actualArgs->size() = declaration.args->size()

context ProcDeclaration
inv unique_names_for_formal_arguments :

args->forAll (a1 | args->forAll (a2 | a1.name = a2.name implies a1 = a2))

endpackage

6.2. Implementation in Kermeta

Kermeta offers same mechanism as OCL to navigate inside the elements (<Collection>.each,
<Collection>.forAll, ...). Through aspect weaving, Kermeta allow to reopen a class and weave an aspect in-
side in order to add this pre/post conditions. Let's implement the example above in Kermeta :

1. Create a new plug-in project org.kermeta.kmlogo.logoasm.srcKermeta (set all by default, hit next and
finish, if you're not familiar with plug-in perspective choose "no" if asked).

16

Create a folder kermeta on the root of this project. This is the folder where we are going to put all ker-
meta sources for this tutorial.

2. Inside the folder kermeta, create a folder 2.Constraints.

Inside the folder 2.Constraints, create a new kermeta file ASMLogoStaticSemantics.kmt. Aanalyse
the content of the following listing and then copy/paste into the newly created file :

package kmLogo::ASM;
require kermeta
require "http://www.kermeta.org/kmLogo"

aspect class ProcDeclaration{
/**
* No two formal parameters of a procedure may have the same name
*/
inv unique_names_for_formal_arguments is
do

args.forAll{ a1 | args.forAll{ a2 |
a1.name.equals(a2.name).implies(a1.equals(a2))}}

end
}

aspect class ProcCall{
/**
* A procedure is called with the same number of arguments as specified in its declaration
*/
inv same_number_of_formals_and_actuals is do

actualArgs.size == declaration.args.size
end

}

It reopen the ProcDeclaration and ProcCall classes and weave invariants as aspects into it

Note

If you get errors on "http://www.kermeta.org/kmLogo", check your package registration. you may hit
the check this file button (on Kermeta's perspective toolbar) to refresh.

3. After saving it, let's see the results.

To do so go back to the project org.kermeta.kmlogo.logoasm.tutorial for a while.

Copy the folders:

• org.kermeta.kmlogo.logoasm.tutorial/parts/2.constracts/models which contains the models con-
form to our ecore metamodel;

• org.kermeta.kmlogo.logoasm.tutorial/parts/2.constracts/tests which contains the main operation
for testing the constraints on these models.

Paste these folders and their content into
org.kermeta.kmlogo.logoasm.srcKermeta/kermeta/2.Constraints.

4. Open the file tests/CheckModels.kmt, remove the two comment blocs inside and analyse its purpose.

Contract

17

It loads the models inside the models folder and require the kermeta file that we've created before.

5. Let's now run our first Kermeta application : Right-click on the file CheckModels.kmt and choose Run
as > Run as Kermeta application.

Note

If you get errors, again, check that you did not forget to register you ecore. Maybe it is necessary to
clean all the projects or launch the kermeta cleaner (trash bin with kermeta icon on your toolbar) or
hit the kermeta validator ("check this file" button in Kermeta perspective toolbar)

On your console view, you should view the result below though the model instances are conform to our
metamodel (you can right-clic and "validate" to see its conformance to the ecore) :

Figure 6.1. Kermeta application checkModels output

Important

Remember : To check the constraints in Kermeta, you should call the method checkAllInvari-
ants() on root element of the model (here the one from models/carre.logoasm)

Contract

18

CHAPTER 7

Behaviour

Let us now add some operational semantics to our metamodel. To do so, we are going to add the actions we
wish to implement thanks to the weaving mechanism in Kermeta that we've just seen before.

7.1. Preparation of the environment

First of all let's prepare the appropriate programming environment needed for this
implementation.org.kermeta.kmlogo.logoasm.srcKermeta will be the concerned project during this
chapter. We'll setup a graphical UI using java AWT and a Java Math wrapper in order to add an UI to our
DSL and add some math operations to Kermeta.

1. Copy/paste the folders and their content from
org.kermeta.kmlogo.logoasm.tutorial/parts/3.behaviour/... into
org.kermeta.kmlogo.logoasm.srcKermeta/kermeta/ i.e.:

• 1.Models where are stored the models we are going to simulate;

• 3.JavaInterfaces where we can see the needed java program for this tutorial;

• 4.VirtualMachine where is defined the application domain;

• 5.Simulator where the execution program is provided.

2. Inside the org.kermeta.kmlogo.logoasm.srcKermeta/src create two packages
org.kermeta.kmLogo.gui and org.kermeta.kmLogo.wrapper.

Move the files from :

• 3.JavaInterfaces/gui/ into the package org.kermeta.kmLogo.gui;

• 3.JavaInterfaces/wrapper/ into the package org.kermeta.kmLogowrapper (as they are now empty,
you may delete the folder 3.JavaInterfaces/gui/ and 3.JavaInterfaces/wrapper/ after).

3.
Caution

At this point, you should have errors on your wrapper package. It is normal, we haven't set up the

19

plugin yet. Though these next steps are not really part of Kermeta processing, we have to fix these
errors to keep on.

Replace the file META-INF/MANIFEST.MF by the one you can find in 3.JavaInterfaces/plugin.
The manifest tell the project about its configuration (dependencies, exported package, runtime, ...). Have
a look at its content and see how to solve the problem (If errors still persist, continue next step).

Copy the file plugin.xml in 3.JavaInterfaces/plugin and paste it on the root of your project. This is the
file which handle the plug-in nature of the project. Observe its content (extension, ..). (you may delete
the folder 3.JavaInterfaces/plugin and the package src/org.kermeta.kmlogo.logoasm.srckermeta
since we don't use it).

4. At this point your project org.kermeta.kmlogo.logoasm.srcKermeta should have no error and present
the structure illustrated below:

Figure 7.1. org.kermeta.kmlogo.logoasm.srcKermeta project structure

7.2. Dynamic semantic

Now, still using aspect weaving, we are going to add some operations and properties to the ASMLogo.ecore
in order to provide an operational semantics to Logo. We'll also see additional Kermeta features on aspect
weaving.

We will weave an interpreter to the ASM by adding "eval" operations to the ASM metaclass where there's a
behaviour. This eval operation will pass the actual context of the program.

1. Open org.kermeta.kmlogo.logoasm.srcKermeta/kermeta/5.Simulator/LogoDynSemantics.kmt and
observe how the weaving (obtained through the require statement at the beginning of the LogoDynSe-

Behaviour

20

mantics.kmt) adds some operations and properties to the ASMLogo.ecore.

2. In the top right corner of the outline view, unfold kmlogo::ASM package. Then use the red/blue pack-
age icon to see what comes from the opened kmt file (ine red) and what comes from the imported files
(in blue). So the "blue-red-mix" colored icon tell you that the class has an aspect weaved into it.

3. Find the class Repeat and observe that it only has a Block property imported from the ecore.

Inside this class, let's now simply add operational behavior in the eval operation as following:

aspect class Repeat
{

method eval(context : Context) : Integer is do
from var i : Integer init condition.eval(context)
until i < 1
loop

result := block.eval(context)
i := i - 1

end
end

}

Save the file and observe that the method eval was added in the outline view of the class Repeat. And
because this aspect comes from this opened kmt file it is colored in red (see figure below).

Behaviour

21

Figure 7.2. Outline view

4. Finally, find the class Context, and observe what is passed between eval() calls.

At this point, you know how to weave operational semantic to Kermeta and rapidly identify them in the Out-
line view. Aspected classes are represented in Red/Blue color.

7.3. Virtual machine

In order to provide the behaviour, the interpreter needs an application domain. In this sample we call it Virtu-
al Machine (VM).

1. Open the file org.kermeta.kmlogo.logoasm.srcKermeta/kermeta/4.VirtualMachine/VMLogo.ecore,

Behaviour

22

initialize its ecore diagram file to see its representation.

In this ecore file you'll notice the various notions needed for this VM : turtle, segment and points.

2. Open 4.VirtualMachine/LogoVMSemantics.kmt and observe how the weaving (obtained through the
require statement at the beginning of the LogoVMSemantics.kmt) adds some operations and properties
to the VMLogo.ecore. Those operations have some impacts on the GUI through command like
stdio.writeln.

3. Like in the section before, use the outline view to identify what has been added (in red) to the structure
(in bue).

4. Find the operation move in the class Turtle and observe some interactions with the UI (stdio.out).

Important

As you may have noticed inside LogoVMSemantics.kmt, there is a call (require to the beginning of
the file) to Math.kmt which is a Java interface needed to properly execute the simulator. So before
moving onto the testing the simulator, let's have a look at how to set up this interface into the
next section.

7.4. Operational semantics extra

In this step, we will see how some extra feature has been implemented in the operational sematics. It will ex-
plain how to call some java code to implement extra features.

7.4.1. Call to java.lang.Math

This step will show you how a call to java may workaround some missing feature in Kermeta. It will explain
how to call java.lang.Math from Kermeta. This is useful since the Kermeta doesn't provides sin, cos, tan op-
erators by default. This may also be useful in case of major performance issue for a specific task.

1. Open org.kermeta.kmlogo.logoasm.srcKermeta/kermeta/3.JavaInterfaces/Math.kmt which is the
Kermeta wrapper. It defines the operations as seen by a kermeta code. The calls to java are done using
the extern keyword. It will call the static java operation with the given qualified name.

2. Then, open the file src/org.kermeta.kmlogo.wrapper/Math.java the Java wrapper. It defines the static
operations that the interpreter can call. All parameters must be of type RuntimeObject. This class is in
charge of:

• translating the RuntimeObject to and from classical java object (here java.lang.Double);

• calling the appropriate java code

Important

Behaviour

23

Remember that the objects in java side must implement a RuntimeObject in order to be manipu-
lated with Kermeta. This is why all static method contains Runtimeobject parameters which is the
Kermeta object kept in memory at runtime, and at last, must return a RuntimeObject.

Also notice that the conversion to java types is done by the TYPE.create() method.

3. In order to use this wrapper, simply import the Math.kmt (see LogoVMSemantics.kmt). Then, use it as
a normal kermeta class. Since both java code is contained by the same plugin, there is no need of
classpath declaration. If you need to use java code from another plugin, make sure that your plugin has a
dependency to it.

4. To test this section, open the kermeta file 3.JavaInterfaces/test/testMath.kmt which contains the main
operation to launch the java wrapper. Observe how a main class is defined in Kermeta and the use of
Math.kmt.

Right-click on testMath.kmt and choose Run > Run as Kermeta Application, you should obtain the
results illustrated below :

Figure 7.3. Call to java Math results

7.4.2. Implementing a graphical output

This section will guide you through the implementation of a graphical interface for the logo turtle. It is simili-
ar to the call to Java.Math previously seen.

1. Open the file org.kermeta.kmlogo.logoasm.srcKermeta/kermeta/3.JavaInterfaces/TurtleGUI.kmt.
Like the java call that we have previously seen, it correspond to the kermeta wrapper. It defines the
classes as seen by kermeta programs. For this application, it provides operations like drawLine,
drawTurtle or clearDrawing. Note that it need an "initialize" operation in order to correctly create the
object.

2. Then open the
org.kermeta.kmlogo.logoasm.srcKermeta/src/org.kermeta.kmlogo.wrapper/TurtleGUIWrappe
filer.java. It defines the static operations that the interpreter can call. All parameters must be of type
RuntimeObject. This class is in charge of :

Behaviour

24

• translating the RuntimeObject to and from classical java object;

• calling the appropriate java code. The associated java object (here a ITurtleGUI) is stored into the
UserData of the RuntimeObject.

Tip

Again, remember that the objects in java side must implement a RuntimeObject in order to be ma-
nipulated with Kermeta. This is why all static method contains Runtimeobject parameters (which are
the Kermeta object kept in memory at runtime), and must return a RuntimeObject object type.

Also notice that the initialize() method allow the "conversion" into java side i.e.: it creates a java ob-
ject from the given name so as to represent the GUI (turtleGUI). Then it sets this object inside the
RuntimeObject by the method setUserData() to store it for later re-use which is done with getUser-
Data(). The conversion to java types is done by the TYPE.getValue() method in this direction.

So if you want to implement yours, be sure that all your java object are not external to the Kermeta
(RuntimeObject) domain, otherwise you must implement an internal controller to set up the glue
(i.e.: the mapping).

3. Then, the extra step here is implementing the graphical user interface. This is done by the classes in
org.kermeta.kmlogo.logoasm.srcKermeta/src/org.kermeta.kmlogo.gui/. In order to allow some ex-
tensibility, it has been splitted into an interface ITurtleGUI and a simple concrete AWT implementa-
tion TurtleSimpleAWTGUI.

4. The last step before testing is to provide a simple controller that asks to the GUI to update the graphical
view of a given Turtle. This is done by the file: 4.VirtualMachine/TurtleControler.kmt which imple-
ments 4.VirtualMachine/MoveListener.kmt (merely a turtle movement listener).

5. After succesfully testing the call to Java.Math, let's now test the virtual machine that we saw in section
7.3. To do so, open 4.VirtualMachine/tests/testVM.kmt. This file will initiate a turtle and draw a
square using the kermeta wrappers and the java wrappers that we saw before (look at the required files
define at the beginning of the kmt to see the interaction between the files). Right-click on this file an
run it as a Kermeta application to see the graphical representation illustred below (notice by the way
the console output that illustrate the impact of the GUI as mentioned in the step 2 of section 7.3):

Figure 7.4. VM testing output

Behaviour

25

6. Open org.kermeta.kmlogo.logoasm.srcKermeta/5.Simulator/ LogoSimulator.kmt. This class
provides an execute operation. This operation allows to load a model that conforms to the
ASMLogo.ecore and start the evaluation of the logo instructions. Finally, it asks to the controller to up-
date the graphical view. This is the main entry and the loader for a logo model instance.

Now that we saw in "step 5" that the VM is working correctly, let's test the whole interpreter that we
have set up. To do so, open the file 5.Simulator/tests/carre.kmt. It will instanciate a simulator, load an
instance model from 1.Models/carre.logoasm and execute the interpreter. Right-click the file and run
as kermeta application, you should obtain the same illustration as before.

7. Let's have another test. Remember the "dots.xmi" that you've created before inside
org.kermeta.kmlogo.logoasm.model/model (if not, a copy is available at
"org.kermeta.kmlogo.logoasm.tutorial/parts/1.metamodel/model"). Move it to the folder
org.kermeta.kmlogo.logoasm.srcKermeta/kermeta/1.Models/. Open it and save it as dots.logoasm
so as to convert it as a model instance understandable by our interpreter (remember the file extension
that we've set up in the .genmodel). Now, open the file 5.Simulator/tests/dots.kmt and see that it calls
the model we've just renamed. Run it as a Kermeta application to see the results (you can test the other
models (*.logoasm) in the folder 5.Simulator/test).

Behaviour

26

CHAPTER 8

Model transformation -
Compilation

In this next step, we'll discover how to map a logo language to lego Mindstorm environment. Logo language
here is like a Platform Independent Model (PIM) and the target program is like a Platform Specific Model
(PSM).

Kermeta allow to weave a "compilation" aspect into the logo metamodel.

1. Copy the folder org.kermeta.kmlogo.logoasm.tutorial/parts/4.compiler/6.NXTCompiler to
org.kermeta.kmlogo.logoasm.srcKermeta/kermeta

2. Open the file 6.NXTCompiler/LogoNXCCompiler.kmt. It adds some operations and properties to the
ASMLogo.ecore. In order to provide a compiler to Logo, it weaves "compileToNXC" operations to the
ASM metaclasses. The compiled code uses a predefined API specific to the target platform (here a Lego
Mindstorm robot).

3. Find operation "compileToNXC" of class "If" and observe how the code is compiled (remember that
you can navigate through the outline view).

4. Find operation compileToStdOut() of class "NXCCompiler". Normally it should call an operation "get-
API" to define the base API of the target platform but right now it is hard coded until we fix the com-
piler.

To launch compiling, refer to the "chapter 10 Using the deployed DSL environment".

27

CHAPTER 9

UI improvements

This chapter introduces the code needed to deploy a Kermeta code for a end user (eclipse GUI). It will use
the interpreter as sample.

9.1. GUI deployment setup

We need to add some GUI elements to interact with the interpreter sample through eclipse GUI. To do so, we
are going to set up 2 plugin projects one to handle ui settings and one to handle needed libraries :

1. Create a new plug-in project and name it : org.kermeta.kmlogo.logoasm.ui. This plugin project con-
tains the eclipse extension and the code that allows to launch a kermeta program from Eclipse GUI. This
hides the language in which the transformation is written in to the end user.

On the creational wizard : Be sure that you set the activator at
org.kermeta.kmlogo.logoasm.ui.Activator then hit next.

Check custom plug-in wizard and hit next, select New File Wizard and Popup Menu then hit next.

2. In the New Wizard Option :

• set the Java package name to org.kermeta.kmlogo.logoasm.ui.tools.wizards;

• set Wizard Category Name to Kermeta samples;

• set WizardClass Name to KmLogoExampleWizard;

• set WizardPage Class Name to KmLogoExampleWizardPage

• set Wizard name to KmLogo samples;

• file extension to kmt and inital file name to new_file.kmt.

In the Sample Popup Menu

• set Submenu name to Logo;

• set Action Label to Run Logo Simulator;

• set Java package name to org.kermeta.kmlogo.logoasm.ui.popup.actions;

28

• set Action Class to RunLogo and hit finish;

If you are asked wether to open the plug-in perspective which you are not familiar with, you can choose
"No".

3. Copy (and replace) all the files :

• CompileNXCLogoK.java, ExecHelper.java, RunLogoK.java, ConvertToLogosmK, ConvertTo-
LogoK, Activator.java from the folder
org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiSetting/ui into the package
org.kermeta.kmlogo.logoasm.ui;

• CompileLogoNXC.java, RunLogo.java, ConvertToLogoasm, ConvertToLogo, from the folder
org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiSetting/popup into the package
org.kermeta.kmlogo.logoasm.ui.popup.actions;

• KmLogoExampleWizard.java into the package org.kermeta.kmlogo.logoasm.ui.tools.wizard.

Inside the package org.kermeta.kmlogo.logoasm.ui.tools.wizard, delete the file KmLogoExampleW-
izardPage.java since we do not use it.

(Update : Inside the package org.kermeta.kmlogo.logoasm.ui.popup.actions, delete the file NewAc-
tion.java if it exists).

It is normal that you got errors at this time just because there are needed libraries that we should define
inside steps ahead.

4. Copy the file org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiSetting/plugin/plugin.xml and over-
write the one in the created project.

Open the file and have a look to the popupMenus extension. They declare the actions for the end user.

5. Copy the folder org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiSetting/icons to the root of the
project org.kermeta.kmlogo.logoasm.ui so as to set up the correct icons for the ui.

Copy (and replace) the folder org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiSetting/editor/icons
to the root of the project org.kermeta.kmlogo.logoasm.editor so as to set up the correct icons for the
ui.

6. Copy (and replace) the file META-INF/MANIFEST.MF by the one from
org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiSetting/plugin.

Open the file and have a look at the dependencies and the export package of the project. We've done
with the first plugin project, let's now move on to the second one.

Caution

RunLogo.java is the code to call the Logo interpreter (the operational behavior we've defined for
it). Open it and look at how is manipulated the kmt file;

RunLogoK.java is the code that calls Kermeta interpreter with a given kermeta program and para-
meters. In addition to initializing the interpreter, this code also sets the correct java classpath. Oth-
erwise, Kermeta interpreter will not correctly find the java code called via the "extern".

UI improvements

29

You should now have no errors (if there's one left reffering to an unresolved "LogoResourceFactory" re-
generate the code for texteditor (repeat step 4 of 4.3))

7. Create a new plug-in project and name it : org.kermeta.kmlogo.logoasm.ui.osspecific. This plugin
project handles the implementation of specific missing libraries according to each platform.

On the creational wizard : Be sure that you set the activator at
org.kermeta.kmlogo.logoasm.ui.osspecific.Activator then hit next.

Select custom plug-in wizard and hit next, select Popup Menu then hit next.

8. In the Sample Popup Menu

• set Submenu name to Logo;

• set Action Label to Compile to NXT Binary (*.rxe);

• set Java package name to org.kermeta.kmlogo.logoasm.ui.popup.actions;

• set Action Class to NXC2RXE then hit finish;

If you are asked wether to open the plug-in perspective which you are not familiar with, you can choose
"No".

9. Copy (and replace) all the files from the folder :

• Activator.java from the folder org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiOsSpecific/ui
into the packageorg.kermeta.kmlogo.logoasm.ui.osspecific;

• UploadRXE.java from the folder
org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiOsSpecific/popup into the package
org.kermeta.kmlogo.logoasm.ui.osspecific.actions;

It is normal that you got errors at this time just because there are needed libraries that we should define
in next step.

10. Set up the missing libraries : Copy the folder
org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiOsSpecific/lib and paste it into your root project.

Unfold this folder, add bluecove.jar, icommand.jar, RXTXcomm.jar to the Java build path
(right-click) and move to the next step.

11. Copy the file org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiOsSpecific/plugin/plugin.xml and
overwrite the one in the created project.

Open the file and have a look to the popupMenus extension. They declares the actions for the end user.

Note

You can customize with your own action by opening the Extensions tab of plugin.xml file and
choose add button to add your action.

12. Copy and replace the file META-INF/MANIFEST.MF by the one from

UI improvements

30

org.kermeta.kmlogo.logoasm.tutorial/parts/5.ui/uiOsSpecific/plugin.

Open the file and have a look at the dependencies and the export package of the project.

To be sure that the editor's configuration has not been overwridden, right-click on
org.kermeta.kmlogo.logoasm.emftexteditor/concrete_syntax/ASMLogo.cs and choose to Generate Text
Ressource again.

Now that everything is correctly configured, let's jump into the last step of this tutorial which is the deploye-
ment the Logo demo.

UI improvements

31

CHAPTER 10

Using the deployed DSL
environment

Now that we've set everything up correctly, it's time for testing the whole! This last step describes the way
you use your DSL within an eclipse workbench.

1. Start a new eclipse worbench Run > Run Configuration > new Eclipse application

2. Create a simple project and name it example

3. Go to File > New > EMFText > EMFText .logo file and create a file carre.logo in this newly created
project.

4. Type in the example code below to tell the turtle to draw a square. If you get some errors, hit CtrlSpace
and enjoy the built-in context assistant to help you resolving them.

to carre :size
Repeat 4 [

Forward :size
Right 90

]
end
Clear
PenDown
carre (50)
PenUp

Save your program and right-click on it and choose Logo > Logo to logoasm in our created pop-up
menu. Look at your project directory : a new file carre.logoasm was created.

5. Rihgt-click on the file carre.logoasm and select Logo > Run Logo Simulator.

You should see our graphical representation of a turtle drawing a square like in section 7.4.2.

6. As you can see in the popup menu there are other available actions that we've defined early inside the
extension of the plugin.xml file. Now if you want to compile, right clic on the file carre.logoasm, and
choose Generate NXC Code (If you want an xmi version you can hit "File > Save" to save your file in
.xmi type). You should see a newly created file carre.nxc which is a C-like language containing the in-
structions.

Note

32

For some reason (an uri converter, path setup, ..) some may not find the *.nxc file inside their
project but into a folder "platform:" and its subfolder in their workspace. You should manually copy it
into your workspace

7. From that .nxc file, you can convert it to a binary file ".rxe" one by choosing Logo > Compile to NXT
Binary. Finally you got a ".rxe" that you can upload by bluetooth to your Logo turtle device by the same
menu Logo > Upload RXE. If the above submenu doesn't show, see the caution below.

Caution

For this last step, you need to set up a corresponding environment (which is not covered by the tar-
get of this tutorial) if you want to implement the compiler.

Maybe you need to check out the solution that we provide in the conclusion in order to succesfully
achieve this last step and see the complete version including the linux, macos, and windows integ-
ration. Additionally, you may also follow instructions inside lib/INSTALL.rxtx inside the project
org.kermeta.kmlogo.logoasm.ui.osspecific.

Using the deployed DSL environment

33

CHAPTER 11

Conclusion

This is the end of this tutorial. Now you should be able to implement your own DSL language using Ker-
meta. Through this example, we provided a Model Delevelopment Kit (MDK) in order to help you build your
own one from "just" an .ecore file and Kermeta. Like the FSM tutorial, this was a concrete example, the
process is described in the Building DSL main process tutorial (See Building DSL with kermeta tutorials)
with the "big picture" (See Introduction chapter) of what we've built here. Information on Kermeta language
is available inside the manual and other tutorials on Kermeta are available on tutorial page (external link).

Note

If you want to compare your results with the solution code deployed inside the Kermeta Eclipse or if
you want to shortcut to the final results directly, you may launch File -> New -> Example... -> Ker-
meta Samples -> Logo tutorial - solution. It will load a bunch of project as shown in the project
structure below :

Figure 11.1. Logo solution project structure

34

http://www.kermeta.org/docs//fr.irisa.triskell.kermeta.samples.fsm.documentation/build/html.single/KerMeta-The-FSM-example/index.html
http://www.kermeta.org/docs/fr.irisa.triskell.kermeta.documentation/build/html.single/KerMeta-Manual/index.html
http://www.kermeta.org/documents/tutorials/

	Tutorial : Building a DSL using Kermeta
	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Installation
	2.1. Prerequisites
	2.2. Install logo projects

	Chapter 3. Define the metamodel
	3.1. From Ecore to genenerated code
	3.2. Metamodel Ecore with Kermeta

	Chapter 4. Editor
	4.1. Dynamic instance
	4.2. Tree view editor
	4.3. Textual editor
	4.4. GMF editor

	Chapter 5. Model manipulation in Kermeta
	5.1. Package registry
	5.2. Serialization

	Chapter 6. Contract
	6.1. Static semantics
	6.2. Implementation in Kermeta

	Chapter 7. Behaviour
	7.1. Preparation of the environment
	7.2. Dynamic semantic
	7.3. Virtual machine
	7.4. Operational semantics extra
	7.4.1. Call to java.lang.Math
	7.4.2. Implementing a graphical output

	Chapter 8. Model transformation - Compilation
	Chapter 9. UI improvements
	9.1. GUI deployment setup

	Chapter 10. Using the deployed DSL environment
	Chapter 11. Conclusion

