
Kermeta Language Overview

The Triskell Metamodeling Language

Franck Chauvel
Zoe DreyEngineer eclipse (black belt)

Franck Fleurey

Abstract

This document gives an overview of the KerMeta language de-
velopped by the Triskell team. It details the specifics of the lan-
guage. The aim of this docuent is to present an general survey of
KerMeta concepts.

Kermeta Language Overview
The Triskell Metamodeling Language
Franck Chauvel
Zoe DreyEngineer eclipse (black belt)
Franck Fleurey
Published Build date: 31-January-2007

Chapter 1. What is Kermeta ? .. 1

Chapter 2. Kermeta basics .. 3

2.1. Architecture ... 3

2.2. Object-Oriented features .. 5

2.2.1. Operation redefinition .. 5

2.2.2. Operation specialization ... 6

2.2.3. Operation overloading .. 7

2.2.4. Conflicts related to multiple inheritance ... 7

2.3. Kermeta type system .. 8

2.3.1. Generic classes ... 8

2.3.2. Generic operations .. 9

2.4. Functions in kermeta .. 9

Chapter 3. Kermeta metamodel ... 10

3.1. Structure package ...10

3.1.1. Packages, subpackages .. 10

3.1.2. Class .. 11

3.1.2.1. A basic example ... 11
3.1.2.2. Abstract class ... 11
3.1.2.3. Parametric classes and type variable binding 11

3.1.3. Properties ... 11

3.1.3.1. Attribute and reference .. 12
3.1.3.2. How to access and control the properties in Kermeta 13

3.1.4. Property .. 15

3.1.5. Datatypes : primitive types and enumeration ... 15

3.2. Behavior package ..15

3.3. Basic Control Structures ...16

3.3.1. Basic block ... 17

3.3.2. Conditional Statement .. 17

3.3.3. Loop ... 17

3.3.4. Exception Handling .. 17

3.3.4.1. Raising exception ... 17
3.3.4.2. Catching Exceptions ... 18

3.4. Using Variables ...18

3.5. Call Expressions ...19

3.5.1. CallSuperOperation ... 19

iv

3.5.2. CallVariable .. 20

3.5.3. CallResult ... 20

3.5.4. CallFeature and SelfExpression ... 20

3.6. Assignment ...21

3.7. Literals ..21

3.8. Lambda Expression ..21

Chapter 4. Examples .. 24

4.1. Hello world ..24

4.2. Simple State Machines ..24

Kermeta Language Overview

v

List of Figures

1.1. Kermeta positionning .. 1

2.1. Package kermeta::language::structure .. 4

2.2. Package kermeta::language::behavior ... 5

3.1. Structure package ...10

3.2. Type binding ...10

3.3. Attributes and references .. 12

3.4. Behavior package ..16

3.5. Kermeta Control Structures ..16

3.6. Use of variables ...18

3.7. use of exceptions ..19

3.8. Kermeta assignment expression ...21

3.9. Kermeta Litteral Expression ..21

3.10. Kermeta lambda expressions ..22

4.1. sample state machine ...25

4.2. Simple State Machine metamodel ...25

vi

CHAPTER 1

What is Kermeta ?

Kermeta is a metamodeling language which allows describing both the structure and the behavior of models.
It has been designed to be fully compliant with the OMG metamodeling language EMOF (part of the MOF
2.0 specification) and provides an action language for specifying the behavior of models.

Kermeta is intended to be used as the core language of a model oriented platform. It has been designed to be
a common basis to implement Metadata languages, action languages, constraint languages or transformation
language.

Figure 1.1. Kermeta positionning

In a nutshell, Kermeta is :

•
• MOF compliant (EMOF compliant to be precise)

• Imperative

• Object-Oriented

• Staticaly Typed

In addition to these characteristics, it includes some typically model-oriented concepts like associations, mul-

1

tiplicities or object containment management.

This document is presents the main features of the kermeta language. Section 2 presents the general properies
of the language, section 3 details the concrete and abstarct syntax of the language and finally section 4
provides some simple programs in kermeta.

Warning

Kermeta is an evolving software and despite that we put a lot of attention to this document,
it may contain errors (more likely in the code samples). If you find any error or have some in-
formation that improves this document, please send it to us using the bugtracker in the
forge:http://gforge.inria.fr/tracker/?group_id=32Last check: v0.0.16

What is Kermeta ?

2

http://gforge.inria.fr/tracker/?group_id=32

CHAPTER 2

Kermeta basics

The goal of the KerMeta langage is to provide an action langage for MOF models. The idea is to start from
MOF, which provides the structure of the langage, and to add an action model. Using the MOF to define the
structure of the KerMeta langage has an important impact on the langage. In fact, as MOF concepts are Ob-
ject-Oriented concepts, KerMeta includes most of the classical Object-Oriented mechanisms. Yet, MOF only
defines structures, and the operational sementic corresponding to MOF concepts has to be defined in Ker-
Meta. For instance MOF does not provide a sementic for behavior inheritance (concepts like method redefini-
tion, abstract method, ... does not have any sense in the MOF).

This section presents the main characteristics of the kermeta language:

•
• Object-Oriented Imperative language

• Type system

• Functions types

2.1. Architecture

Kermeta has been designed to be fully compatible with the OMG standard meta-data lanquage EMOF. The
metamodel of kermeta is divided into two packages : structure which corresponds to EMOF and behavior
which corresponds to the actions. This section gives an overview of these two packages and their relation-
ships.

3

Figure 2.1. Package kermeta::language::structure

Figure 3 presents the main classes of the structure package. To design this package, we started from EMOF
and completed it to build the Kermeta language. The choice of EMOF is motivated by two main reasons :
firstly it is standardized by the OMG and secondly is is well-suported by tools such as Eclipse/EMF.

As MOF is not initialy designed to be executable, several concepts has to be completed to build an execut-
able language. The first and most important modification is to add the ability to define the behavior of opera-
tions. To achieve this we define an action language in the package behavior of Kermeta. The class hierarchy
of the package behavior is presented on Figure ???. In practice, Kermeta expressions have been designed by
adding model modification capabilities (like assignement of properties for instance) to OCL expressions.

Kermeta basics

4

Figure 2.2. Package kermeta::language::behavior

The link between structure and behavior is made throught the property « body » of class Operation which al-
lows defining the behavior of an operation using a Kermeta expression. Yet, in order to fulfil the require-
ments presented before a few more extensions has to be performed on EMOF. These are detailed in the fol-
lowing sections.

2.2. Object-Oriented features

A MOF class can have operations but MOF does not provide any way to describe the behavior of these oper-
ations. Furthermore MOF does not provide any semantics neither for operation call nor for operation inherit-
ance and redefinition. This section investigates how, while weaving actions into MOF, MOF semantics can
be extended to support behavior definition and extension mechanisms provided by the action language. This
implies answering several questions concerning redefinition and dispatch.

2.2.1. Operation redefinition

MOF does not specify the notion of overriding an operation because from a structural point of view it does
not make any sense. To stick to MOF structure one can argue that redefinition should be forbidden in an ex-
ecutable MOF. This is the simplest solution as it also solves the problem of the dynamic dispatch since a
simple static binding policy can be used.

However, operation redefinition is one of the key features of Object-Oriented (OO) languages. The OO
paradigm has demonstrated that operation redefinition is a useful and powerful mechanism to define the be-
havior of objects and allow for variability. This would be very convenient to properly model dynamic se-
mantic variation points existing in e.g. UML state-charts. For this reason we believe that an important feature
of an executable MOF is to provide a precise behavior redefinition mechanism. The choice of the operation
overriding mechanism must take into account the usual problem of redefinition such as method specialization
and conflicting redefinitions related to multiple inheritance.

Kermeta basics

5

class A
{

operation m1() is do// Some behavior end
// method m2 is abstract operation m2() is abstract}

class B inherits A
{

method m1() is do// Behavior redefinition end
method m2() is do// Implementation of the abstract method end}

Table 2.1. Operation redefinition in Kermeta

2.2.2. Operation specialization

The issue of choosing semantics for operation overriding has been widely studied for the design of OO lan-
guages (cf. M. Abadi and L. Cardelli, A therory of objects, Springer). However, OO languages have not ad-
opted a unique solution to this problem. In this context, any language that defines an operation overriding
mechanism should define precisly the solution it implements.

The simplest approach to overriding is to require that an overriding method has exactly the same signature as
the overridden method. That is that both the type of the parameters and the return type of the operation
should be invariant among the implementations of an operation. For the sake of simplicity this is the solution
we have chosen for the current version of Kermeta.

However, this condition can be relaxed to allow method specialization, i.e. specialization on the types of
parameters or/and return type of the operation. On one hand, the return type of the overriding method can be
a sub-type of the return type of the overridden method. Method specialization is said to be covariant for the
return types. On the other hand, the types of parameters of the overriding method might be super types of the
parameters of the overridden methods. Method specialization is thus contravariant for the parameters.

In practice languages can allow method specialization only on the return type (this is the case of Java 1.5) or
both on parameters and return type (this is the case of Eiffel). Among these solutions, we may choose a less
restrictive policy then strict invariance for future versions of Kermeta in order to improve the static type
checking of Kermeta programs.

Kermeta basics

6

2.2.3. Operation overloading

Overloading allows multiple operations taking different types of parameters to be defined with the same
name. For each call, depending on the type of the actual parameters, the compiler or interpreter automatically
calls the right one. This provides convenient way for writing operation whose behaviors differs depending on
the static type of the parameters. Overloading is extensively used is some functional languages such as
Haskell and has been implemented in OO languages such as Java or C#. However it causes numerous prob-
lems in an OO context due to inheritance and even multiple inheritance in our case [REF?]. It is not imple-
mented in some OO languages such as Eiffel for this reason, and that is why we have chosen to exclude over-
loading from Kermeta.

2.2.4. Conflicts related to multiple inheritance

This is also a classical problem that has been solved in several OO languages. There are mainly two kinds of
conflicts when a class inherits features from several super-classes:

• Several features with the same might be inherited from different super classes causing a name clash.

• Several implementations of a single operation could be inherited from different super classes.

There are two kinds of solution to resolve these conflicts. The first one is to have an implicit resolution mech-
anism which arbitrarily chooses the method to inherit according to an arbitrary policy. The second one is to
include in the language constructions that allow the programmer to explicitly resolve conflicts. In Eiffel, for
instance, the programmer can rename features in order to avoid name clashes and can select the method to in-
herit if several redefinition of an operation are inherited from parent classes.

In the current version of Kermeta, we have chosen to include a minimal selection mechanism that allows the
user to explicitly select the inherited method to override if several implementations of an operation are inher-
ited. This mechanism does not allow resolving some name clashes and thus reject some ambiguous programs.
For the future version of Kermeta we plan to include a more general mechanism such as traits proposed by
Schärli et al. In any case we believe the conflict resolution mechanism should be explicit for the programmer.

class O
{

operation m() is abstract}
class A inherits O
{

method m() is do// [...] end}
class B inherits O
{

method m() is do// [...] end}
class C inherits A, B
{
// Explicit selection of the implementation// to inherit method m() from A is do// [...] end}

Kermeta basics

7

Table 2.2. Explicit selection of super operation in Kermeta

2.3. Kermeta type system

One of the core charateristics of kermeta is to be statically typed. In order to allow static typing of OCL-like
expression, a few modifications had to be made to the EMOF type system (Please refer to paper Weaving Ex-
ecutability into Object-Oriented Meta-Languages by P.A. Muller et al., to be presented at the Models05 con-
ference).

As a result to these modification genericity support has been added into Kermeta. Like Eiffel and Java 5 Ker-
meta supports generic classes and generic operations. This section gives on overview of these concepts in
kermeta.

2.3.1. Generic classes

In kermeta classes can have a set of type parameters. These type variables can be used in the implementation
of the class as any other type. By default a type variable can take as value any type but a type variable can be
constraind by a type, in that case, the type variable can only be substituted by a sub-type of this type. The fol-

Kermeta basics

8

lowing code demonstrate how to create generic classes.

class Queue<G>
{

reference elements : oset G[*]

operation enqueue(e : G) : Void is do
elements.add(e)

end
operation dequeue() : G is do result := elements.first

elements.removeAt(0)
end}

class SortedQueue<C : Comparable> inherits Queue<C>
{

method enqueue(e : C) : Void is do var i : Integer
from i := 0
until i == elements.size or e > elements.elementAt(i)
loop i := i + 1
end elements.addAt(i, e)

end}

2.3.2. Generic operations

Kermeta operations can contain type parameters. Like for classes these type parameters can be constrained by
a super type. However, unlike for classes for which the bindigs to these type parameters is explicit, for opera-
tions the actual type to bound to the variable is statically infered for each call according to the type of the ac-
tual parameters.

class Utils {

operation max<T : Comparable>(a : T, b : T) : T is do result := if a > b then a else b end end}

2.4. Functions in kermeta

In order to implement and statically type check OCL-like iterators, kermeta includes some limited functional
features. See section 3.8 for detailed informations.

Kermeta basics

9

CHAPTER 3

Kermeta metamodel

3.1. Structure package

Figure 3.1. Structure package

Figure 3.2. Type binding

3.1.1. Packages, subpackages

10

// the root package is unique, and specified by the “;”
package rootPackage;

package nestedPackage
{

package nestedInNestedPackage {}
}

3.1.2. Class

3.1.2.1. A basic example

// This is the class definition

class A
{
// Properties
attribute b : B#a // A is a composite. “b” is its component
reference c : C#a // A and C are linked by an association
attribute i : Integer;
property d : Integer

getter is do
result := i + 1

end

// An Operation with one Parameter.
operation f(ownedParam : typeOfOwnedParam) : Type is do
end

}

class B
{

reference a : A
}
class C
{

reference a : A
}

3.1.2.2. Abstract class

// This class is abstract (its property isAbstract equals True!)
abstract class A {}

3.1.2.3. Parametric classes and type variable binding

// This is a parametric class
class A<G> {}

// This is the type variable binding : G is binded with Integer
var a : A<Integer>
a := A<Integer>.new

3.1.3. Properties

Kermeta metamodel

11

A property can be expressed in three ways : as a property (which is derivated or calculated), as an attribute,
or as a reference. We introduce in this section the 2 last cases, which are relationships between two concrete
entities.

3.1.3.1. Attribute and reference

• attribute: an attribute defines a composition (e.g the black diamond) between two entities. The diamond-ed
association end is navigable by definition

Note

NOTE : a bi-composition is not valid in MOF. So, only one entity can be the component of the other.

• reference: a reference defines a association between two entities.

• opposite: the opposite [property] of a property is expressed by a sharp #. The following example means
that container is the opposite property of the entity of type Contained3 and referenced by the name con-
tained.

class A {

reference b : B#a

}

class B {

reference a : A#b

}

The following section shows a set of examples of attributes and references.

Figure 3.3. Attributes and references

package root;

Kermeta metamodel

12

class A {
attribute b : B[0..*]

}
class B {}
class A2 {}
class B2 {

reference a : A2
}
class A3 {

reference b : B3#a
}
class B3 {

reference a : A3#b
}
class A4 {}
class A5 {

attribute b : B5#a
}

class B5 {
reference a : A5[1..1]#b

}
class A6 {

attribute b : B6[0..*]#a
}
class B6 {

reference a : A6#b
}
class A7 {

attribute b : B7#a
}
class B7 {

reference a : A7[0..*]#b
}
class A8 {

attribute b : B8[1..1]#a
}
class B8 {

reference a : A8#b
}
class A9 {}
class B9 {

reference a : A9[1..1]
}
class A4bis {

reference a4bis : A4bis#a4bis
}

Note

For every cases where the upper bound is upper to 1, the type of the reference is OrderedSet. The
reader will refer to the Language basics chapter (except the bag type) to have the available types
for a [m..n](n>1) multiplicity property.

3.1.3.2. How to access and control the properties in Kermeta

let's take the example with A6 and B6 :

class A6 {
attribute b : B6[0..*]#a

}

• Get the attribute of an instance:

Kermeta metamodel

13

var a6 : A6 init A6.new
var b6 : Set<B6>
// get the b attribute (if b6 was a 1-multiplicity element, its type // would have been “B6”)
b6 := a6.b

• Add/remove an element to a property with a [m..n] multiplicity

var aa6 : A6 init A6.new
var ab6 : B6 init B6.new
// add ab6 to the attribute “b”
aa6.b.add(ab6)
// remove ab6 : telling the index of the element to remove.
aa6.b.remove(0)

• Get the opposite of a property

Let's take a simple class:

class A {reference refb : B#refa}class B {reference refa : A}

We access the opposite of b following this way:

var vara : A init A.new
var varb : B init B.new
// add b to the attribute “b”
vara.refb := varb
// this assertion is true.
assert(varb.refa == vara)

It is not different with references that have a [m..n] (m>n and n>1) multiplicity:

class A {reference refb : B[0..*]#refa}class B {reference refa : A}

We access the opposite of b following this way:

var vara : A init A.new
var varb : B init B.new
// add b to the attribute “b”
vara.refb.add(varb)
// this assertion is true.
assert(varb.refa == vara)

• Get the container of a property

var aa6 : A6 init A6.new
var ab6 : B6
// add ab6 to the attribute “b”
aa6.b.add(ab6)
var a6cont : A6
a6cont := ab6.container()
assert(a6cont.equals(aa6))

Kermeta metamodel

14

3.1.4. Property

The specific property defined by the keyword property is a derived property. This means that it does not ref-
erence to a concrete entity : it is indeed calculated, through the accessor operations getter and setter.

Let's take the following class definitions :

// readonly property : it has no setter
class A :

attribute period : Real
property readonly frequency : Real

getter is do
result := 1/period

end

// modifiable property :
class A :

attribute period : Real
property frequency : Real :

getter is do
result := 1/period

end
setter is do

period := 1/value
end

3.1.5. Datatypes : primitive types and enumeration

Here is simple datatypes examples :

var myVar1 : Integer init 10
var myVar2 : Integer
var myVar3 : Real init 3.14
var myVar4 : String init "a new string value"
var myVar5 : boolean

And here is an Enumeration simple type :

Enumeration Size
{

small;
normal;
big

}
// An enumLiteral :
Size.small

3.2. Behavior package

Kermeta metamodel

15

Figure 3.4. Behavior package

3.3. Basic Control Structures

Kermeta provides basic control structures : block, conditionnal branch, loop, and execption handling. Here
there an exerpt of the Meta-model describing control structures. Each basic control structures derives fromo
the Expression concept.

Figure 3.5. Kermeta Control Structures

Kermeta metamodel

16

In the following of this section, each basic control structure is presented in a “Eiffel-like” syntax.

3.3.1. Basic block

Basic block allow programmers to manage variable scope. As in others langage, a variable can be used in the
block where it was defined.

do
var v1 : Integer init 15
do

var v2 : Integer init 13
do

var res : Integer
res := v1 + v2

end
end

end

3.3.2. Conditional Statement

Conditionnal expression allow user to switch on an boolean expression.

Do
var v1 : integer init 15
var v2 : integer init 16

if (v1 < v2) then
stdio.writeln(“V2 est plus grand que V1”)

else
stdio.writeln(“V1 est plus grand que V2”)

end
end

3.3.3. Loop

Returns void

var v1 : Integer init 3
var v2 : Integer init 6

from var i : Integer init 0
until i == 10
loop

i := i + 1
end

3.3.4. Exception Handling

3.3.4.1. Raising exception

do
var excep : Exception

excep := Exception.new
stdio.writeln(“Throwing an exception ! “)

Kermeta metamodel

17

raise excep
end

3.3.4.2. Catching Exceptions

Block structure can actually catch exception with the following syntax.

var v1 : integer init 2
var v2 : integer init 3

do
var v3 : integer
v3 := v1 + v2

rescue (myError : Exception)
// something with myError
// ...

end

3.4. Using Variables

Figure 3.6. Use of variables

do
// this is a VariableDecl, which initialization is 14
var v1 : integer init 14
var v2 : integer init 145 * v1

var tab : integer[0..*]
end

In the previous example, we define 3 variables of type integer. The first is initialized with the “14” litteral
value, the second is initialized with an expression using v1. For the last variable, we use a multiplicity nota-
tion to specifiy an ordered set of integer.

Kermeta metamodel

18

3.5. Call Expressions

Figure 3.7. use of exceptions

3.5.1. CallSuperOperation

In the following example, the type of super(element) is CallSuperOperation:

class ParentClass {
operation op(element : Integer) : Integer is do

result := element + 1

Kermeta metamodel

19

end
}

class ChildClass {
method op(element : Integer) : Integer is do

result := super(element)
end}

3.5.2. CallVariable

The type of callvar, below, is CallVariable :

var myvar : Integer
var callvar : Integer init 4
//
myvar := callvar

A special case, when calling a lambda expression : the type of lf in the assignment of res, is CallVariable

var lf : <Integer->Integer>
var res : Integer
lf := function { i : Integer | i.plus(1) }

// The type of lf, below, is CallVariableres := lf(4)

3.5.3. CallResult

The type of result is CallResult

operation op() : Integer is do
result := 61

end

3.5.4. CallFeature and SelfExpression

• The type of self is a SelfExpression!

• The type of attr in the body of the operation myoperation is CallFeature (a callfeature on self), and so is
the type of myoperation(4) (a callfeature on a).

class A {
attribute attr : Integer
operation myoperation(param : Integer) : Integer is do

result := self.attr + param
end

}
class B {

operation anotheroperation() : Integer is do
var a : A
result := a.myoperation(4)

end
}

Kermeta metamodel

20

3.6. Assignment

Figure 3.8. Kermeta assignment expression

In the following example, thetarget is of type CallExpression and thevalue is of type Expression.

var num : Numeric
var thetarget : Integer
var thevalue : Integer
// assignment : thetarget->target, thevalue->value
thetarget := thevalue
// casting : a is casted into the type of num which is Numeric.
num ?= a

3.7. Literals

Figure 3.9. Kermeta Litteral Expression

var i : Integer
i := 5 // 5 is a IntegerLiteral
var s : String
s := “I am a string” // “I am a string” is a StringLiteral

3.8. Lambda Expression

Kermeta metamodel

21

Figure 3.10. Kermeta lambda expressions

• A basic lambda expression.

• i is a LambdaParameter, which type is Integer

• i.plus(4) is the body of thie lambda expression

var aLambdaExp : <Integer->Integer>
var aLambdaResult : Integer
aLambdaExp := function { i : Integer | i.plus(4) }
// aLambdaResult equals 7
aLambdaResult := aLambdaExp(3)

• A lambda expression with many parameters

var aLambdaExp : <[Integer, Integer]->Integer>
var aLambdaResult : Integer
aLambdaExp := function { i : Integer, j : Integer | i * j }
// aLambdaResult equals 12
aLambdaResult := aLambdaExp(3, 4)

• A lambda expression on a collection

var sequence : Sequence<Integer> init Sequence
var init_set : Set<Integer> init Set<Integer>.new
init_set.add(32)

Kermeta metamodel

22

init_set.add(23)
init_set.add(41)

// This sequence equals : [320, 230, 41]
sequence := init_set.collect { element | element*10}

Kermeta metamodel

23

CHAPTER 4

Examples

4.1. Hello world

Here, there is the well-known “helloworld” example. In this example, we define a class called “Hello” which
contains a simple operation named “sayHello”. This operation doesn't take any parameters and just prints
“Hello the world” on the terminal.

@mainClass “HelloWorld::Hello”
@mainOperation “sayHello”

package HelloWorld;

using kermeta::standard

class Hello
{

operation sayHello() is
do

stdio.writeln(“Hello the World !”)
end

}

As we explain in previous section, KerMeta describes meta-models with their operationnal semantic. So, con-
trary to a Java program, there is no implicit entry point in your model and your have to use the two specific
annotations “mainClass” and “mainOperation” to specify which method is the entry point of the execution.

4.2. Simple State Machines

Here there is a more complicated example which provide a Finite State Machine (FSM) Meta-Model. A finite
state is defined by a set of state (containing the initial state) and a set of transition which link two states to-
gether. Each transition are describe with a character they require as input and the caracter they produce as
output.

Here, we present this finite-state machine in a specific graphical syntax where states are represented as circles
and transitions by arrow between circles. Inputs and outputs are present above transitions. Here, “a/b” say
that we consume an “a” to produce a. The following state machine works on simple words built with the
{a,b} alphabet and replaces “ab” sequence by “ba” sequences and vice-versa.

24

Figure 4.1. sample state machine

As FSM consume and produce caracters, we can express intuitivelly the operationnal semantic as follow :

“For all character of the input string, we need to find a transition “t” among the outgoing transitions of the
current state and produce the output character of t. Then, we move to the target state of the transition t.”

In KerMeta we need to express the structure and the operationnal semantic in an object oriented way. To do
that, we define a class FSM which refers a set of state, an initial state and a current state. Each state refers a
set of outgoing transition and a set of incoming transition. To express the semantic, we define a “run” opera-
tion in FSM class, a “step” operation in the State class and a “fire” operation in the transition class. The fire
operation consume a the input character and produce the output character. The “step” operation select in the
outgoing transition set, a transition triggered by input character. The run operation processes each character
of the input string.

This metamodel is presented in the following figure in a UML class diagram syntax.

Figure 4.2. Simple State Machine metamodel

Examples

25

package fsm;

using kermeta::standard #

class FSM #
{

attribut ownedState : set State[0..*]#owningFSM
reference initialState : State[1..1]
reference currentState : State

operation run(input : String) : String raises FSMException is # do
// reset if there is no current state
if currentState == void then reset end
// initialise result
result := ""
from var i : Integer init 0
until input.size == i
loop

result := result +

currentState.step(input.charAt(i))
i := i + 1

end
end

operation reset() : Void is #
do

currentState := initialState
end

}

First, we need to define a package that will contain all our classes (cf. #). After, the package declaration, all
classes and package define in the file will be part of this first package.

Then, we define a class FSM (cf. #) that represente a root element. Here, a FSM object contains its states and
its transitions. We define the mehod “run” (cf. #) that we present previously and we add a operation called
“reset” which restart the FSM (cf. #).

class State

{
attribut name : String #
reference owningFSM : FSM#ownedState
attribut outgoingTransition : set Transition[0..*]#source
reference incomingTransition : set Transition[0..*]#target

operation step(c : Character) : Character raises FSMException
is do #

// Get the valid transitions
var validTransitions : Collection<Transition>
validTransitions :=
outgoingTransition.collect { t | t.input.equals(c) }

// Check if there is one and only one valid transition
if validTransitions.empty then

raise NoTransition.new
end

if validTransitions.size > 1 then
raise NonDeterminism.new

end

// fire the transition
result := validTransitions.one.fire

end
}

Here we define the class State (cf. #) which thee appropriate attributes and references (cf. #). Then we define

Examples

26

the operation “step” which select the transition to fire (cf. #).

class Transition {
reference source : State[1..1]#outgoingTransition
reference target : State[1..1]#incomingTransition
attribut output : Character
attribut input : Character

operation fire() : Character is do
// update FSM current state
source.owningFSM.currentState := target
result := output

end
}

abstract class FSMException {}
class NonDeterminism inherits FSMException {}
class NoTransition inherits FSMException {}

Finally, we define the class transition we define the class transition with the “fire” operation. We define too
the “FSMException” which is an abstract class and the two exception “NonDeterminism” and
“NoTransition” which inherits from FSMException.

Examples

27

	Kermeta Language Overview
	Table of Contents
	Chapter 1. What is Kermeta ?
	Chapter 2. Kermeta basics
	2.1. Architecture
	2.2. Object-Oriented features
	2.2.1. Operation redefinition
	2.2.2. Operation specialization
	2.2.3. Operation overloading
	2.2.4. Conflicts related to multiple inheritance

	2.3. Kermeta type system
	2.3.1. Generic classes
	2.3.2. Generic operations

	2.4. Functions in kermeta

	Chapter 3. Kermeta metamodel
	3.1. Structure package
	3.1.1. Packages, subpackages
	3.1.2. Class
	3.1.2.1. A basic example
	3.1.2.2. Abstract class
	3.1.2.3. Parametric classes and type variable binding

	3.1.3. Properties
	3.1.3.1. Attribute and reference
	3.1.3.2. How to access and control the properties in Kermeta

	3.1.4. Property
	3.1.5. Datatypes : primitive types and enumeration

	3.2. Behavior package
	3.3. Basic Control Structures
	3.3.1. Basic block
	3.3.2. Conditional Statement
	3.3.3. Loop
	3.3.4. Exception Handling
	3.3.4.1. Raising exception
	3.3.4.2. Catching Exceptions

	3.4. Using Variables
	3.5. Call Expressions
	3.5.1. CallSuperOperation
	3.5.2. CallVariable
	3.5.3. CallResult
	3.5.4. CallFeature and SelfExpression

	3.6. Assignment
	3.7. Literals
	3.8. Lambda Expression

	Chapter 4. Examples
	4.1. Hello world
	4.2. Simple State Machines

