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CHAPTER 1

What i1s Kermeta ?

Kermeta is a metamodeling language which allows describing both the structure and the behavior of models.
It has been designed to be fully compliant with the OMG metamodeling language EMOF (part of the MOF
2.0 specification) and provides an action language for specifying the behavior of models.

Kermetais intended to be used as the core language of a model oriented platform. It has been designed to be
a common basis to implement Metadata languages, action languages, constraint languages or transformation
language.

Meta-data
Languages

Transformation
Action Languages
Languages
Constraint Common
Languages denominator

Figure 1.1. Kermeta positionning

In anutshell, Kermetais:

MOF compliant (EMOF compliant to be precise)
e Imperative

¢ Object-Oriented

Staticaly Typed

In addition to these characteristics, it includes some typically model-oriented concepts like associations, mul-
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tiplicities or object containment management.

This document is presents the main features of the kermeta language. Section 2 presents the general properies
of the language, section 3 details the concrete and abstarct syntax of the language and finally section 4
provides some simple programs in kermeta.

Warning

Kermeta is an evolving software and despite that we put a lot of attention to this document,
it may contain errors (more likely in the code samples). If you find any error or have some in-
formation that improves this document, please send it to us using the bugtracker in the
forge:http://gforge.inria.fr/tracker/?group_id=32Last check: v0.0.16


http://gforge.inria.fr/tracker/?group_id=32

CHAPTER 2

Kermeta basics

The goal of the KerMeta langage is to provide an action langage for MOF models. The idea is to start from
MOF, which provides the structure of the langage, and to add an action model. Using the MOF to define the
structure of the KerMeta langage has an important impact on the langage. In fact, as MOF concepts are Ob-
ject-Oriented concepts, KerMeta includes most of the classical Object-Oriented mechanisms. Y et, MOF only
defines structures, and the operational sementic corresponding to MOF concepts has to be defined in Ker-
Meta. For instance MOF does not provide a sementic for behavior inheritance (concepts like method redefini-
tion, abstract method, ... does not have any sense in the MOF).

This section presents the main characteristics of the kermeta language:

¢ Object-Oriented | mperative language
e Typesystem

« Functions types

2.1. Architecture

Kermeta has been designed to be fully compatible with the OMG standard meta-data lanquage EMOF. The
metamodel of kermeta is divided into two packages : structure which corresponds to EMOF and behavior
which corresponds to the actions. This section gives an overview of these two packages and their relation-
ships.
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Figure 2.1. Package kermeta::language::structure

Figure 3 presents the main classes of the structure package. To design this package, we started from EMOF
and completed it to build the Kermeta language. The choice of EMOF is motivated by two main reasons :
firstly it is standardized by the OMG and secondly isiswell-suported by tools such as Eclipse/EMF.

As MOF is not initialy designed to be executable, several concepts has to be completed to build an execut-
able language. The first and most important modification isto add the ability to define the behavior of opera-
tions. To achieve this we define an action language in the package behavior of Kermeta. The class hierarchy
of the package behavior is presented on Figure ???. In practice, Kermeta expressions have been designed by
adding model modification capahilities (like assignement of properties for instance) to OCL expressions.
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H Expresson
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Figure 2.2. Package kermeta::language::behavior

The link between structure and behavior is made throught the property « body » of class Operation which al-
lows defining the behavior of an operation using a Kermeta expression. Yet, in order to fulfil the require-
ments presented before a few more extensions has to be performed on EMOF. These are detailed in the fol-
lowing sections.

.2. Object-Oriented features

A MOF class can have operations but MOF does not provide any way to describe the behavior of these oper-
ations. Furthermore MOF does not provide any semantics neither for operation call nor for operation inherit-
ance and redefinition. This section investigates how, while weaving actions into MOF, MOF semantics can
be extended to support behavior definition and extension mechanisms provided by the action language. This
implies answering several questions concerning redefinition and dispatch.

2.2.1. Operation redefinition

MOF does not specify the notion of overriding an operation because from a structural point of view it does
not make any sense. To stick to MOF structure one can argue that redefinition should be forbidden in an ex-
ecutable MOF. This is the smplest solution as it also solves the problem of the dynamic dispatch since a
simple static binding policy can be used.

However, operation redefinition is one of the key features of Object-Oriented (OO) languages. The OO
paradigm has demonstrated that operation redefinition is a useful and powerful mechanism to define the be-
havior of objects and allow for variability. This would be very convenient to properly model dynamic se-
mantic variation points existing in e.g. UML state-charts. For this reason we believe that an important feature
of an executable MOF is to provide a precise behavior redefinition mechanism. The choice of the operation
overriding mechanism must take into account the usual problem of redefinition such as method specialization
and conflicting redefinitions related to multiple inheritance.

| |




Kermeta basics

A ?Iass A
operation nil() is do// Sonme behavi or end
/1 method n2 is abstract operation n2() is abstract}
class B inherits A
m*]'::' { . . S
net hod nil() is do// Behavior redefinition end
method n2() is do// |nplenentation of the abstract nethod
i)
m1i)
M)

Table 2.1. Operation redefinition in Kermeta

2.2.2. Operation specialization

The issue of choosing semantics for operation overriding has been widely studied for the design of OO lan-
guages ( cf. M. Abadi and L. Cardelli, A therory of objects, Springer). However, OO languages have not ad-
opted a unique solution to this problem. In this context, any language that defines an operation overriding
mechanism should define precisly the solution it implements.

The simplest approach to overriding is to require that an overriding method has exactly the same signature as
the overridden method. That is that both the type of the parameters and the return type of the operation
should be invariant among the implementations of an operation. For the sake of simplicity thisisthe solution
we have chosen for the current version of Kermeta.

However, this condition can be relaxed to alow method specialization, i.e. specialization on the types of
parameters or/and return type of the operation. On one hand, the return type of the overriding method can be
a sub-type of the return type of the overridden method. Method specialization is said to be covariant for the
return types. On the other hand, the types of parameters of the overriding method might be super types of the
parameters of the overridden methods. Method specialization is thus contravariant for the parameters.

In practice languages can allow method specialization only on the return type (this is the case of Java 1.5) or
both on parameters and return type (this is the case of Eiffel). Among these solutions, we may choose a less
restrictive policy then strict invariance for future versions of Kermeta in order to improve the static type
checking of Kermeta programs.
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Kermeta basics

2.2.3. Operation overloading

Overloading alows multiple operations taking different types of parameters to be defined with the same
name. For each call, depending on the type of the actua parameters, the compiler or interpreter automatically
calls the right one. This provides convenient way for writing operation whose behaviors differs depending on
the static type of the parameters. Overloading is extensively used is some functional languages such as
Haskell and has been implemented in OO languages such as Java or C#. However it causes numerous prob-
lems in an OO context due to inheritance and even multiple inheritance in our case [REF?]. It is not imple-
mented in some OO languages such as Eiffel for this reason, and that is why we have chosen to exclude over-
loading from Kermeta.

2.2.4. Conflicts related to multiple inheritance

Thisis aso aclassical problem that has been solved in several OO languages. There are mainly two kinds of
conflicts when a class inherits features from several super-classes:

» Several features with the same might be inherited from different super classes causing a name clash.

 Several implementations of a single operation could be inherited from different super classes.

There are two kinds of solution to resolve these conflicts. The first oneisto have an implicit resolution mech-
anism which arbitrarily chooses the method to inherit according to an arbitrary policy. The second one is to
include in the language constructions that alow the programmer to explicitly resolve conflicts. In Eiffel, for
instance, the programmer can rename features in order to avoid name clashes and can select the method to in-
herit if several redefinition of an operation are inherited from parent classes.

In the current version of Kermeta, we have chosen to include a minimal selection mechanism that allows the
user to explicitly select the inherited method to override if several implementations of an operation are inher-
ited. This mechanism does not allow resolving some name clashes and thus reject some ambiguous programs.
For the future version of Kermeta we plan to include a more general mechanism such as traits proposed by
Schérli et a. In any case we believe the conflict resolution mechanism should be explicit for the programmer.

class O

operation n() is abstract}
class Ainherits O

method m() is do// [...] end}
class B inherits O
method m() is do// [...] end}

class Cinherits A B

/1 Explicit selection of the inplenentation// to inherit

net ho
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0
)

A B
rrif) i)
c
]

Table 2.2. Explicit selection of super operation in Kermeta

2.3. Kermeta type system

One of the core charateristics of kermetais to be statically typed. In order to alow static typing of OCL-like
expression, afew modifications had to be made to the EM OF type system (Please refer to paper Weaving Ex-
ecutability into Object-Oriented Meta-Languages by P.A. Muller et ., to be presented at the Models05 con-
ference).

As aresult to these modification genericity support has been added into Kermeta. Like Eiffel and Java5 Ker-
meta supports generic classes and generic operations. This section gives on overview of these concepts in
kermeta.

2.3.1. Generic classes

In kermeta classes can have a set of type parameters. These type variables can be used in the implementation
of the class as any other type. By default a type variable can take as value any type but atype variable can be
constraind by atype, in that case, the type variable can only be substituted by a sub-type of this type. The fol-
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lowing code demonstrate how to create generic classes.

class Queue<G
reference el enents : oset (*]

operation enqueue(e : G : Void is do
el enent s. add( e)

end

operati on dequeue() : Gis do result := elenments.first
el enent s. renoveAt (0)

end}

class SortedQueue<C : Conparabl e> inherits Queue<C

net hod enqueue(e : C) : Void is do var i : Integer
fromi :=0
until i == elenments.size or e > elenents. el enent At (i)
| oop =i +1
end el ements. addAt (i, e)

end}

2.3.2. Generic operations

Kermeta operations can contain type parameters. Like for classes these type parameters can be constrained by
a super type. However, unlike for classes for which the bindigs to these type parameters is explicit, for opera-
tions the actual type to bound to the variable is statically infered for each call according to the type of the ac-
tual parameters.

class Uils {

operati on max<T : Conparable>(a : T, b: T) : Tis do result :=if a > b then a else b er

2.4. Functions in kermeta

In order to implement and statically type check OCL-like iterators, kermeta includes some limited functional
features. See section 3.8 for detailed informations.



CHAPTER 3

Kermeta metamodel

3.1. Structure package

Figure 3.1. Structure package

swpertype | 0.1 H TypeDefinition
type H Type A
sLperType )
1 @ isinstanceq) H NamedElement
0.x O naEme: String
E Class classDefinition |
y H ClassDefinition
# rew) 1
0.x
H TypeVariable
0.x typeParamBindng typeParameter
1 | veriakie

H TypeVariableBinding

Figure 3.2. Type binding

3.1.1. Packages, subpackages
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/'l the root package is unique, and specified by the “;”
package root Package;

package nest edPackage

package nest edl nNest edPackage {}

3.1.2. Class

3.1.2.1. A basic example

/1 This is the class definition
class A
/| Properties
attribute b : B#a // Ais a conposite. “b” is its conponent
reference c : C#a // A and C are |linked by an associ ation
attribute i : Integer;
property d : |Integer

getter is do

result :=1i + 1
end

/1 An Operation with one Paraneter.
gﬁgrati on f(ownedParam : typeOf OmedParam : Type is do
}
class B
reference a : A
class C

reference a : A

3.1.2.2. Abstract class

/1 This class is abstract (its property isAbstract equals True!)
abstract class A {}

3.1.2.3. Parametric classes and type variable binding

// This is a paranetric class
class A<G {}

/1 This is the type variable binding : Gis binded with Integer
var a @ A<lnteger>
a = A<Integer>. new

3.1.3. Properties

11
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A property can be expressed in three ways : as a property (which is derivated or calculated), as an attribute,
or as areference. We introduce in this section the 2 last cases, which are relationships between two concrete
entities.

3.1.3.1. Attribute and reference

- attribute: an attribute defines a composition (e.g the black diamond) between two entities. The diamond-ed
association end is navigable by definition

Note

NOTE : a bi-composition is not valid in MOF. So, only one entity can be the component of the other.

* reference: areference defines a association between two entities.

» opposite: the opposite [property] of a property is expressed by a sharp #. The following example means
:gleﬁ e((:j(?ntai ner is the opposite property of the entity of type Contained3 and referenced by the name con-
classA {
referenceb : B#a
}

classB {

referencea: A#b

}

The following section shows a set of examples of attributes and references.

0.1 0.1 b 0.1 0.1
A2 B2 AS (—— B6 A3 B3
a a * a b
a 0.1 1 0.1 1
AT ——> BT AS —— BS A9 B4
* b a b a
adbis
0.1 1 +] 0.1
AS ——x BB A [M—— B Ad ibi Adbis
a b . adbis

Figure 3.3. Attributes and references

package root;

12
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class A {
attribute b : B[0..*]

class B {}
class A2 {}
class B2 {
reference a : A2

}
class A3 {
reference b : B3#a

}
class B3 {
reference a : A3#b

}
class A4 {}
class A5 {
attribute b : B5#a

class B5 {
reference a : A5[1..1]#b

}
class A6 {
attribute b : B6[0..*]#a
}
class B6 {
reference a : A6#b
}
class A7 {
attribute b : B7#a
class B7 {
reference a : A7[0..*]#b
}
class A8 {
attribute b : B8[1..1] #a
}
class B8 {

reference a : A8#b

}
class A9 {}
class B9 {
reference a : A9[1..1]

}
class Adbis {
reference adbis : Adbis#adbis

Note

For every cases where the upper bound is upper to 1, the type of the reference is OrderedSet. The
reader will refer to the Language basics chapter (except the bag type) to have the available types
for a [m..n](n>1) multiplicity property.

3.1.3.2. How to access and control the properties in Kermeta

let's take the example with A6 and B6 :

class A6 {
attribute b : B6[0..*]#a
}

» Get the attribute of an instance:

13
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A6 init A6.new
Set <B6>

var a6 :
var b6 :

// get the b attribute (if b6 was a 1-nultiplicity el enent,

b6 := a6.b

« Add/remove an element to a property with a[m..n] multiplicity

var aa6 : A6 init A6.new
var ab6 : B6 init B6.new
/1 add ab6 to the attribute “b”
aa6. b. add(ab6)
/'l renmove ab6 :
aab. b. renove(0)

* Get the opposite of a property

Let'stake asimple class:

class A {reference refb :

We access the opposite of b following this way:

var vara : Ainit A new

var varb : Binit B. new

// add b to the attribute “b”
vara.refb := varb

/'l this assertion is true.
assert(varb.refa == vara)

telling the index of the elenent to renove.

B#refa}class B {reference refa :

its type // would have been “B6")

A

Itis not different with references that have a[m..n] (m>n and n>1) multiplicity:

class A {reference refb :

We access the opposite of b following this way:

var vara : Ainit A new

var varb : Binit B.new

// add b to the attribute “b”
var a. ref b. add(varb)

/1l this assertion iIs true.
assert(varb.refa == vara)

» Get the container of a property

var aa6 : A6 init A6.new

var ab6 : B6

/] add ab6 to the attribute “b”
aab. b. add(ab6)

var aécont : A6

abcont := ab6. contai ner ()
assert (a6cont. equal s(aab))

14
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3.1.4. Property

The specific property defined by the keyword property is a derived property. This means that it does not ref-
erence to aconcrete entity : it isindeed calculated, through the accessor operations getter and setter.

Let'stake the following class definitions :

/'l readonly property : it has no setter
class A :
attribute period : Real
property readonly frequency : Real
getter is do
result := 1/period
end

/1 nodifiable property :
class A :
attribute period : Real
property frequency : Real
getter is do

result := 1/period
end
setter is do

period := 1/val ue
end

3.1.5. Datatypes : primitive types and enumeration

Here is simple datatypes examples :

var nyVarl : Integer init 10

var nmyVar2 : |nteger

var nyVar3 : Real init 3.14

var nyVar4 : String init "a new string val ue"
var myVar5 : bool ean

And hereis an Enumeration simpletype :

Enuneration Size
smal | ;
nor nal ;
bi g

}
/1 An enuniiteral
Si ze. smal |

3.2. Behavior package

15
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| H CallExpression |

| H Raise |

| = EnyayEx presson I

H Block |
H Conditionnal |

H Asdgnement I

H Literal |

?

H VariableD ecl I

| H SelfExpresdon I

E Loop |

H CallVariable |

| K Integerliteral |

| &

Bool eanLiteral |

| H VeirdLiteral |

| H StringLiteral |

| H TypeLiteral |

| H LambdaExpresdon I

!

| H CallSuperOperation |

H CallResult

Figure 3.4. Behavior package

3.3. Basic Control Structures

Kermeta provides basic control structures : block, conditionnal branch, loop, and execption handling. Here
there an exerpt of the Meta-model describing control structures. Each basic control structures derives fromo

the Expression concept.

TypedElement

MultiplicityElement

isOrdered: Boolean
isUnique: Boolean
lorwer Inteder

upper: UnlimitedMatural

0.1 | condiion stopCondition | 0.1
thenBody o
5 Expression #mmahzatlon
0.1
0.1
elseBody
body
0.1
f G
statement%‘l..* body
Conditionnal Block Loop P
Rescue excepﬁonT‘}'pe
rescueBlock excaptionMame: String 1

Figure 3.5. Kermeta Control Structures

16
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In the following of this section, each basic control structure is presented in a“Eiffel-like” syntax.

3.3.1. Basic block

Basic block allow programmers to manage variable scope. As in others langage, a variable can be used in the
block where it was defined.

do
var vl : Integer init 15
do
var v2 : Integer init 13
do
var res : |Integer
res := vl + v2
end
end
end

3.3.2. Conditional Statement

Conditionnal expression allow user to switch on an boolean expression.

Do
var vl : integer init 15
var v2 : integer init 16
if (vl <v2) then
stdio.witeln(“V2 est plus grand que V1")
el se
stdio.witeln(“V1l est plus grand que V2")
end
end
3.3.3. Loop
Returns void
var vl : Integer init 3
var v2 : Integer init 6
fromvar i : Integer init O
until i == 10
| oop
=i+ 1
end

3.3.4. Exception Handling

3.3.4.1. Raising exception

do
var excep : Exception

excep : = Exception. new
stdio.witel n(“Throw ng an exception ! “)

17
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rai se excep
end

3.3.4.2. Catching Exceptions

Block structure can actually catch exception with the following syntax.

var vl : integer init 2
var v2 : integer init 3
do

var v3 : integer

v3 := vl + v2

rescue (nyError : Exception)
/1 sonmething with nyError
[

end

3.4. Using Variables

type

Type *{ TypedElement |

1
islnstance() Z}‘

MultiplicityElement
initialization Expression isOrdered: Boolean
islUnique; Boolean
1 lower: Integer
Z% upper: UnlimitedMatural
VariableDecl type Z}
N <——> TypeReference
identifier: String 1
Figure 3.6. Use of variables
do
/] this is a VariableDecl, which initialization is 14
var vl : integer init 14
var v2 : integer init 145 * vl
var tab : integer[O0..*]
end

In the previous example, we define 3 variables of type integer. The first is initialized with the “14” litteral
value, the second is initialized with an expression using v1. For the last variable, we use a multiplicity nota-
tion to specifiy an ordered set of integer.
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3.5. Call Expressions

[FErameters

target
»  Expression I(

—

SelfExpression

o+

CallExpression

nama: String

4

| I | ¢

CallSuperOperation CallVariable CallFeature

}

CallResult

[rameters

target
»  Expression |(

—

SelfExpression

n*

CallExpression

nama: Ztring

Q

| I | ¢

CallSuperQOperation CallVariable CallFeature

)

CallResult

Figure 3.7. use of exceptions

3.5.1. CallSuperOperation

In the following example, the type of super(element) is Call Super Operation:

class ParentC ass {
operation op(elenent : Integer) : Integer is do
result := elenent + 1
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end
}
class Childd ass {
met hod op(elenent : Integer) : Integer is do
result := super (el enent)
end}

3.5.2. CallVariable

The type of callvar, below, is CallVariable :

var nyvar : |nteger

var callvar : Integer init 4
/1

myvar := callvar

A specia case, when calling alambda expression : the type of If in the assignment of res, is CallVariable

var |f : <lnteger->Integer>

var res : |Integer
If := function { i : Integer | i.plus(l) }
/1l The type of If, below, is CallVariableres := 1f(4)

3.5.3. CallResult

The type of result is CallResult

operation op() : Integer is do
result := 61
end

3.5.4. CallFeature and SelfExpression

e Thetype of self isa SelfExpression!

» The type of attr in the body of the operation myoperation is CallFeature (a calfeature on self), and so is
the type of myoperation(4) (a callfeature on a).

class A {
attribute attr : Integer
operation nyoperation(param: Integer) : Integer is do
result := self.attr + param
end
class B {
operati on anot heroperation() : Integer is do
var a : A
result := a.nyoperation(4)
end
}

20



Kermeta metamodel

3.6. Assignment

value
Expression
1
Assignement target | CallExpression
S
Fd
isCast: Boolean 1 | name: String

Figure 3.8. Kermeta assignment expression

In the following example, thetarget is of type CallExpression and thevalue is of type Expression.

var num: Nuneric

var thetarget : |nteger
var thevalue : |Integer
/| assignnent : thetarget->target, theval ue->val ue
thetarget := theval ue
/] casting : ais casted into the type of numwhich is Nuneric.
num ?= a
3.7. Literals

Figure 3.9. Kermeta Litteral Expression

var i @ Integer

i :=5 /1 5 is a IntegerlLiteral

var s : String

s :="“l ama string” // “l ama string” is a StringLiteral

3.8. Lambda Expression
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by Expression

h

-

LambdaExpression

Type

izinstancel)

1 | type

TypedElement

|

=

0.* | parameters

MultiplicityElement

iz0rdered:. Boolean
iznigue: Boolean
lowver: Integer

upper: Unlimitedistural

LamhdaParameter

type

name; String

>

TypeReference

1

Figure 3.10. Kermeta lambda expressions

* A basic lambda expression.

« iisaLambdaParameter, which typeis Integer

* i.plus(4) isthe body of thie lambda expression

var alanbdaExp :
var alLanbdaResul t

<I nt eger - >I nt eger >
I nt eger

alLanbdaExp : = function { i : Integer

/'l alLanbdaResul t
alLanbdaResult : =

equal s 7
aLanmbdaExp( 3)

» A lambda expression with many parameters

var alanbdaExp :
var alanbdaResul t

i.plus(4) }

<[Integer, |nteger]->lnteger>

| nt eger

alLanbdaExp := function { i : Integer

/| alLanbdaResul t
alLanbdaResult : =

equal s 12
aLanbdaExp(3, 4)

» A lambda expression on a collection

var sequence : Sequence<|nteger> init
var init_set : Set<Integer> init Set<Integer>. new

init_set.add(32)

22

j @ Integer | i * j }

Sequence




Kermeta metamodel

init_set.add(23)
init_set.add(41)

/'l This sequence equals : [320, 230, 41]
sequence := init_set.collect { elenent | el ement*10}
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CHAPTER 4

Examples

4.1. Hello world

Here, there is the well-known “helloworld” example. In this example, we define a class called “Hello” which
contains a simple operation named “sayHello”. This operation doesn't take any parameters and just prints
“Hello theworld” on the terminal.

@rai nCl ass “Hel | oWorl d:: Hel | 0”
@i nOper ati on “sayHel | 0”
package Hel | oWorl d;
usi ng kerneta::standard
class Hello
operation sayHello() is
do

stdio.witeln(“Hello the Wrld !")
end

Aswe explain in previous section, KerM eta describes meta-models with their operationnal semantic. So, con-
trary to a Java program, there is no implicit entry point in your model and your have to use the two specific
annotations “mainClass’ and “mainOperation” to specify which method is the entry point of the execution.

4.2. Simple State Machines

Here there is a more complicated example which provide a Finite State Machine (FSM) Meta-Model. A finite
state is defined by a set of state (containing the initial state) and a set of transition which link two states to-
gether. Each transition are describe with a character they require as input and the caracter they produce as
output.

Here, we present this finite-state machine in a specific graphical syntax where states are represented as circles
and transitions by arrow between circles. Inputs and outputs are present above transitions. Here, “alb” say
that we consume an “a’ to produce a. The following state machine works on simple words built with the
{a,b} alphabet and replaces “ab” sequence by “ba’ sequences and vice-versa.

24



Examples

a'b

(@ ~QD*

Figure 4.1. sample state machine

AsFSM consume and produce caracters, we can express intuitivelly the operationnal semantic asfollow :

“For all character of the input string, we need to find a transition “t” among the outgoing transitions of the
current state and produce the output character of t. Then, we move to the target state of the transition t.”

In KerMeta we need to express the structure and the operationnal semantic in an object oriented way. To do
that, we define a class FSM which refers a set of state, an initial state and a current state. Each state refers a
set of outgoing transition and a set of incoming transition. To express the semantic, we define a“run” opera-
tion in FSM class, a “step” operation in the State class and a “fire” operation in the transition class. The fire
operation consume a the input character and produce the output character. The “step” operation select in the
outgoing transition set, a transition triggered by input character. The run operation processes each character
of theinput string.

This metamode! is presented in the following figurein a UML class diagram syntax.

= FaM
T == e e e e -)| = FSMException

1| & renfnput: String) Q
| |

| E NoTransition I | E NonDeterminism I

—

currantSiate 1 initialStare

ROUTCE outgoing Transition —
H Stat = Transition
: ale
1. Suri ! 0.. 3 il Charadtes
name: String
) = output Character
awnedState - target Incoming Transitan i
i steplinput: Character): Character —
3 o s ¢ fiwal): Character

Figure 4.2. Simple State Machine metamodel

25



Examples

package fsm
usi ng kerneta::standard #
cl ass FSM #
attribut ownedState : set State[O0..*]#owni ngFSM

reference initial State : State[1..1]
reference currentState : State

operation run(input : String) : String rai ses FSMException is # do
/1 reset if there is no current state
if currentState == void then reset end
/1 initialise result
result :=""
fromvar i : Integer init O
until input.size ==
| oop
result :=result +

current State. step(input.charAt(i))

i =i +1
end
end
operation reset() : Voidis #
do
currentState := initial State
end

First, we need to define a package that will contain all our classes (cf. #). After, the package declaration, all
classes and package define in the file will be part of thisfirst package.

Then, we define aclass FSM (cf. #) that represente aroot element. Here, a FSM object contains its states and
its transitions. We define the mehod “run” (cf. #) that we present previously and we add a operation called
“reset” which restart the FSM (cf. #).

class State

attribut name : String #

ref erence owni ngFSM : FSMtownedSt at e

attribut outgoingTransition : set Transition[O..*]#source
reference incom ngTransition : set Transition[O..*]#target

operation step(c : Character) : Character raises FSMException
is do #

/1l Get the valid transitions

var validTransitions : Collection<Transition>

val idTransitions : =

outgoi ngTransition.collect { t | t.input.equals(c) }

// Check if there is one and only one valid transition
if validTransitions. enpty then

rai se NoTransition. new
end

if validTransitions.size > 1 then
rai se NonDet er mi ni sm new

end

/1l fire the transition

result := validTransitions.one.fire
end

Here we define the class State (cf. #) which thee appropriate attributes and references (cf. #). Then we define
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the operation “ step” which select the transition to fire (cf. #).

class Transition {

}

reference source : State[l..1]#outgoingTransition
reference target : State[1l..1]#i nconmingTransition

attribut output : Character
attribut input : Character

operation fire() : Character is do
/'l update FSM current state
sour ce. owni ngFSM current State : = target
result := output

end

abstract class FSMException {}
cl ass NonDet ermi ni sminherits FSMException {}
class NoTransition inherits FSMException {}

Finally, we define the class transition we define the class transition with the “fire” operation. We define too

the “FSMException” which is an abstract class and the two exception “NonDeterminism”

“NoTransition” which inherits from FSMException.

27
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